Indoor location systems based on ultra-wideband (UWB) technology have become very popular in recent years following the introduction of a number of low-cost devices on the market capable of providing accurate distance measurements. Although promising, UWB devices also suffer from the classic problems found when working in indoor scenarios, especially when there is no a clear line-of-sight (LOS) between the emitter and the receiver, causing the estimation error to increase up to several meters. In this work, machine learning (ML) techniques are employed to analyze several sets of real UWB measurements, captured in different scenarios, to try to identify the measurements facing non-line-of-sight (NLOS) propagation condition. Additionally, an ulterior process is carried out to mitigate the deviation of these measurements from the actual distance value between the devices. The results show that ML techniques are suitable to identify NLOS propagation conditions and also to mitigate the error of the estimates when there is LOS between the emitter and the receiver.
Location and tracking needs are becoming more prominent in industrial environments nowadays. Process optimization, traceability or safety are some of the topics where a positioning system can operate to improve and increase the productivity of a factory or warehouse. Among the different options, solutions based on ultra-wideband (UWB) have emerged during recent years as a good choice to obtain highly accurate estimations in indoor scenarios. However, the typical harsh wireless channel conditions found inside industrial environments, together with interferences caused by workers and machinery, constitute a challenge for this kind of system. This paper describes a real industrial problem (location and tracking of forklift trucks) that requires precise internal positioning and presents a study on the feasibility of meeting this challenge using UWB technology. To this end, a simulator of this technology was created based on UWB measurements from a set of real sensors. This simulator was used together with a location algorithm and a physical model of the forklift to obtain estimations of position in different scenarios with different obstacles. Together with the simulated UWB sensor, an additional inertial sensor and optical sensor were modeled in order to test its effect on supporting the location based on UWB. All the software created for this work is published under an open-source license and is publicly available.
The Internet of Things (IoT) involves a wide variety of heterogeneous technologies and resource-constrained devices that interact with each other. Due to such constraints, IoT devices usually require lightweight protocols that optimize the use of resources and energy consumption. Among the different commercial IoT devices, Bluetooth and Bluetooth Low Energy (BLE)-based beacons, which broadcast periodically certain data packets to notify their presence, have experienced a remarkable growth, specially due to their application in indoor positioning systems. This article proposes a family of protocols named Lightweight Protocol for Sensors (LP4S) that provides fast responses and enables plug-and-play mechanisms that allow IoT telemetry systems to discover new nodes and to describe and auto-register the sensors and actuators connected to a beacon. Thus, three protocols are defined depending on the beacon hardware characteristics: LP4S-6 (for resource-constraint beacons), LP4S-X (for more powerful beacons) and LP4S-J (for beacons able to run complex firmware). In order to demonstrate the capabilities of the designed protocols, the most restrictive (LP4S-6) is tested after implementing it for a telemetry application in a beacon based on Eddystone (Google’s open beacon format). Thus, the beacon specification is extended in order to increase its ability to manage unlimited sensors in a telemetry system without interfering in its normal operation with Eddystone frames. The performed experiments show the feasibility of the proposed solution and its superiority, in terms of latency and energy consumption, with respect to approaches based on Generic Attribute Profile (GATT) when multiple users connect to a mote or in scenarios where latency is not a restriction, but where low-energy consumption is essential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.