Our objective was to estimate the strength of the effect of the I148M (rs738409 C/G) patatin-like phospholipase domain containing 3 (PNPLA3) variant on nonalcoholic fatty liver (NAFLD) and disease severity across different populations. We performed a systematic review by a meta-analysis; literature searches identified 16 studies. Our results showed that rs738409 exerted a strong influence not only on liver fat accumulation (GG homozygous showed 73% higher lipid fat content when compared with CC ones, data from 2,937 subjects; P < 1 3 10 29 ), but also on the susceptibility of a more aggressive disease (GG homozygous had 3.24-fold greater risk of higher necroinflammatory scores and 3.2-fold greater risk of developing fibrosis when compared with CC homozygous; P < 1 3 10 29 ; data from 1,739 and 2,251 individuals, respectively). Nonalcoholic steatohepatitis (NASH) was more frequently observed in GG than CC homozygous (odds ratio [OR] 3.488, 95% confidence interval [CI] 1.859-6.545, random model; P < 2 3 10 24 ; data from 2,124 patients). Evaluation of the risk associated with heterozygosity for the variant suggests that the additive genetic model best explains the effect of rs738409 on the susceptibility to develop NAFLD. Nevertheless, carrying two G alleles does not seem to increase the risk of severe histological features. Meta-regression showed a negative correlation between male sex and the effect of rs738409 on liver fat content (slope: 22.45 6 1.04; P < 0.02). The rs738409 GG genotype versus the CC genotype was associated with a 28% increase in serum alanine aminotransferase levels. Conclusion: By summarizing the amount of evidence, this study provided unequivocal evidence of rs738409 as a strong modifier of the natural history of NAFLD in different populations around the world.
Objectives
We used a screening strategy of global serum microRNA (miRNA) profiling, followed by a second stage of independent replication and exploration of liver expression of selected miRNAs to study: (1) the circulating miRNA signature associated with non-alcoholic fatty liver disease (NAFLD) progression and predictive power, (2) the role of miRNAs in disease biology and (3) the association between circulating miRNAs and features of the metabolic syndrome.
Methods
The study used a case-control design and included patients with NAFLD proven through biopsy and healthy controls.
Results
Among 84 circulating miRNAs analysed, miR-122, miR-192, miR-19a and miR-19b, miR-125b, and miR-375 were upregulated >2-fold (p<0.05) either in simple steatosis (SS) or non-alcoholic steatohepatitis (NASH). The most dramatic and significant fold changes were observed in the serum levels of miR-122 (7.2-fold change in NASH vs controls and 3.1-fold change in NASH vs SS) and miR-192 (4.4-fold change in NASH vs controls); these results were replicated in the validation set. The majority of serum miR-122 circulate in argonaute2-free forms. Circulating miR-19a/b and miR-125b were correlated with biomarkers of atherosclerosis. Liver miR-122 expression was 10-fold (p<0.03) downregulated in NASH compared with SS and was preferentially expressed at the edge of lipid-laden hepatocytes. In vitro exploration showed that overexpression of miR-122 enhances alanine aminotransferase activity.
Conclusions
miR-122 plays a role of physiological significance in the biology of NAFLD; circulating miRNAs mirror the histological and molecular events occurring in the liver. NAFLD has a distinguishing circulating miRNA profile associated with a global dysmetabolic disease state and cardiovascular risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.