Current design constraints have encouraged the studies of aeroacoustics fields around compressible jet flows. The present work addresses the numerical study of subgrid scale modeling for unsteady turbulent jet flows as a preliminary step for future aeroacoustic analyses of main engine rocket plumes. An in-house large eddy simulation (LES) tool is developed in order to reproduce high fidelity results of compressible jet flows. In the present study, perfectly expanded jets are considered because the authors want to emphasize the effects of the jet mixing phenomena. The large eddy simulation formulation is written using the finite difference approach, with an explicit time integration and using a second order spatial discretization. The energy equation is carefully discretized in order to model the energy equation of the filtered Navier-Stokes formulation. The classical Smagorinsky model, the dynamic Smagorinsky model and the Vreman models are the chosen subgrid scale closures for the present work. Numerical simulations of perfectly expanded jets are performed and compared with the literature in order to validate and compare the performance of each subgrid closure in the solver.
Sheet cavitation appears in many hydraulic applications and can lead to technical issues. Some fundamental outcomes, such as, the complex topology of 3-dimensional cavitation pockets and their associated dynamics need to be carefully visited. In the paper, the dynamics of partial cavitation developing in a 3D Venturi geometry and the interaction with sidewalls are numerically investigated. The simulations are performed using a one-fluid compressible Reynolds-averaged Navier-Stokes solver associated with a nonlinear turbulence model and a void ratio transport equation model. A detailed analysis of this cavitating flow is carried out using innovative tools, such as, spectral proper orthogonal decompositions. Particular attention is paid in the study of 3D effects by comparing the numerical results obtained with sidewalls and periodic conditions. A three-dimensional dynamics of the sheet cavitation, unrelated to the presence of sidewalls, is identified and discussed.
The present work is primarily concerned with studying the effects of artificial dissipation and of certain diffusive terms in the turbulence model formulation on the capability of representing turbulent boundary layer flows. The flows of interest in the present case are assumed to be adequately represented by the compressible Reynolds-averaged Navier-Stokes equations, and the Spalart-Allmaras eddy viscosity model is used for turbulence closure. The equations are discretized in the context of a general purpose, density-based, unstructured grid finite volume method. Spatial discretization is based on the Steger-Warming flux vector splitting scheme and temporal discretization uses a backward Euler point-implicit integration. The work discusses in detail the theoretical and numerical formulations of the selected model. The computational studies consider the turbulent flow over a flat plate at 0.3 freestream Mach number. The paper demonstrates that the excessive artificial dissipation automatically generated by the original spatial discretization scheme can deteriorate boundary layer predictions. Moreover, the results also show that the inclusion of Spalart-Allmaras model cross-diffusion terms is primarily important in the viscous sublayer region of the boundary layer. Finally, the paper also demonstrates how the spatial discretization scheme can be selectively modified to correctly control the artificial dissipation such that the flow simulation tool remains robust for high-speed applications at the same time that it can accurately compute turbulent boundary layers.
New regulations are imposing noise emissions limitations for the aviation industry which are pushing researchers and engineers to invest efforts in studying the aeroacoustics phenomena. Following this trend, an in-house computational fluid dynamics tool is build to reproduce high fidelity results of supersonic jet flows for aeroacoustic analogy applications. The solver is written using the large eddy simulation formulation that is discretized using a finite difference approach and an explicit time integration. Numerical simulations of supersonic jet flows are very expensive and demand efficient high-performance computing. Therefore, non-blocking message passage interface protocols and parallel Input/Output features are implemented into the code in order to perform simulations which demand up to one billion grid points. The present work addresses the evaluation of code improvements along with the computational performance of the solver running on a computer with maximum theoretical peak of 2.727 PFlops. Different mesh configurations, whose size varies from a few hundred thousand to approximately one billion grid points, are evaluated in the present paper. Calculations are performed using different workloads in order to assess the strong and weak scalability of the parallel computational tool. Moreover, validation results of a realistic flow condition are also presented in the current work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.