The deformability of erythrocytes is a critical determinant of blood flow in microcirculation. By capturing red blood cells (RBC) with optical tweezers and dragging them through a viscous fluid we were able to measure their overall elasticity. We measured, and compared, the RBC deformability of 15 homozygous patients (HbSS) including five patients taking hydroxyurea (HU) for at least 6 months (HbSS/HU), 10 subjects with sickle cell trait (HbAS) and 35 normal controls. Our results showed that the RBC deformability was significantly lower in haemoglobin S (HbS) subjects (HbSS and HbAS), except for HbSS/HU cells, whose deformability was similar to the normal controls. Our data showed that the laser optical tweezers technique is able to detect differences in HbS RBC from subjects taking HU, and to differentiate RBC from normal controls and HbAS, indicating that this is a very sensitive method and can be applied for detection of drug-response in sickle cell disease.
Hemagglutination is widely used in transfusion medicine and depends on several factors including antigens, antibodies, electrical properties of red blood cells and the environment of the reaction. Intermolecular forces are involved in agglutination with cell clumping occurring when the aggregation force is greater than the force of repulsion. Repulsive force is generated by negative charges on the red blood cell surface that occur due to the presence of the carboxyl group of sialic acids in the cell membrane; these charges create a repulsive electric zeta potential between cells. In transfusion services, specific solutions are used to improve hemagglutination, including enzymes that reduce the negative charge of red blood cells, LISS which improves the binding of antibodies to antigens and macromolecules that decrease the distance between erythrocytes. The specificity and sensitivity of immunohematological reactions depend directly on the appropriate use of these solutions. Knowledge of the electrical properties of red blood cells and of the action of enhancement solutions can contribute to the immunohematology practice in transfusion services.
The frequency degenerate and nondegenerate two-photon absorption (2PA) spectra of direct band gap semiconductor quantum dots are studied. Measuring the spectra for both cases in samples of CdSe and CdTe with different quantum dot sizes and size distributions, we observe that the 2PA spectra and the 2PA coefficient are size dependent, so that smaller dots have smaller 2PA even after taking into account the volume fraction. Theory considering the mixing of the hole bands, in a k · p model, explains the data quite well except for the smallest dots. A comparison with the parabolic band approximation is also shown
Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.
Electrically active field-effect transistors (FET) based biosensors are of paramount importance in life science applications, as they offer direct, fast, and highly sensitive label-free detection capabilities of several biomolecules of specific interest. In this work, we report a detailed investigation on surface functionalization and covalent immobilization of biomarkers using biocompatible ethanolamine and poly(ethylene glycol) derivate coatings, as compared to the conventional approaches using silica monoliths, in order to substantially increase both the sensitivity and molecular selectivity of nanowire-based FET biosensor platforms. Quantitative fluorescence, atomic and Kelvin probe force microscopy allowed detailed investigation of the homogeneity and density of immobilized biomarkers on different biofunctionalized surfaces. Significantly enhanced binding specificity, biomarker density, and target biomolecule capture efficiency were thus achieved for DNA as well as for proteins from pathogens. This optimized functionalization methodology was applied to InP nanowires that due to their low surface recombination rates were used as new active transducers for biosensors. The developed devices provide ultrahigh label-free detection sensitivities ∼1 fM for specific DNA sequences, measured via the net change in device electrical resistance. Similar levels of ultrasensitive detection of ∼6 fM were achieved for a Chagas Disease protein marker (IBMP8-1). The developed InP nanowire biosensor provides thus a qualified tool for detection of the chronic infection stage of this disease, leading to improved diagnosis and control of spread. These methodological developments are expected to substantially enhance the chemical robustness, diagnostic reliability, detection sensitivity, and biomarker selectivity for current and future biosensing devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.