This chapter examines the network of Colombian sovereign securities settlements. With data from the settlement market infrastructure we study financial institutions' transactions from three different trading and registering networks that we combine into a multi-layer network. Examining this network of networks enables us to confirm that (i) studying isolated single-layer trading and registering networks yields a misleading perspective on the relations between and risks induced by participating financial institutions; (ii) a multi-layer approach produces a connective structure consistent with most real-world networks (e.g. sparse, inhomogeneous, and clustered); and (iii) the multi-layer network is a multiplex that preserves the main connective features of its constituent layers due to positively correlated multiplexity. The results highlight the importance of mapping and understanding how financial institutions relate to each other across multiple financial environments, and the value of financial market infrastructures as sources of data for working on multi-layer financial networks.
Este trabajo discute las implicaciones del Ciclo Financiero Global (CFG) en las economías emergentes. Encontramos tres principales resultados. Primero, usando microdatos de préstamos interbancarios y corporativos entre 2004 y 2019, identificamos que las contracciones del CFG se asocian con reducciones en la oferta de crédito externo hacia los bancos y las firmas en Colombia, pero también sobre el crédito corporativo local. Encontramos además que, la incidencia del CFG en la intermediación financiera se reduce de manera importante en presencia de controles temporales a las entradas de capital. Segundo, identificamos que el CFG incide en el comportamiento de la inversión extranjera de portafolio en Colombia y que los anuncios de política monetaria no convencional de la Reserva Federal entre 2010 y 2018 acentuaron sus efectos sobre los flujos de portafolio. Tercero, empleando un panel VAR con una muestra de 24 economías emergentes con datos para 2004-2019, identificamos que el CFG afecta la dinámica de los flujos de portafolio y crédito internacional. Los países con mayor uso de políticas macroprudenciales y aquellos que tienen un régimen cambiario flexible exhiben una menor influencia del CFG sobre la dinámica de los flujos de capital y una respuesta de política monetaria menos procíclica.
The balance sheet is a snapshot that portraits the financial position of a firm at a specific point of time. Under the reasonable assumption that the financial position of a firm is unique and representative, we use a basic artificial neural network pattern recognition method on Colombian banks' 2000-2014 monthly 25-account balance sheet data to test whether it is possible to classify them with fair accuracy. Results demonstrate that the chosen method is able to classify out-of-sample banks by learning the main features of their balance sheets, and with great accuracy. Results confirm that balance sheets are unique and representative for each bank, and that an artificial neural network is capable of recognizing a bank by its financial accounts. Further developments fostered by our findings may contribute to enhancing financial authorities' supervision and oversight duties, especially in designing early-warning systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.