BackgroundAquatic exercise has been widely used for rehabilitation and functional recovery due to its physical and physiological benefits. However, there is a high variability in reporting on the muscle activity from surface electromyographic (sEMG) signals. The aim of this study is to present an updated review of the literature on the state of the art of muscle activity recorded using sEMG during activities and exercise performed by humans in water.MethodsA literature search was performed to identify studies of aquatic exercise movement.ResultsTwenty-one studies were selected for critical appraisal. Sample size, functional tasks analyzed, and muscles recorded were studied for each paper. The clinical contribution of the paper was evaluated.ConclusionsMuscle activity tends to be lower in water-based compared to land-based activity; however more research is needed to understand why. Approaches from basic and applied sciences could support the understanding of relevant aspects for clinical practice.
The aim of this study was to use sEMG to measure the neuromuscular activity during the TUG task in water, and compare this with the responses for the same task on land. Ten healthy subjects [5 males and 5 females [mean ± SD]: age, 22.0 ± 3.1 yr; body mass, 63.9 ± 17.2 kg. A telemetry EMG system was used on the following muscles on the right side of the body: the quadriceps – rectus femoris [RF], long head of the biceps femoris [BF], tibialis anterior [TA], gastrocnemius medialis [GM], soleus [SOL], rectus abdominis [RA] and erector spinae [ES]. Each subject performed the TUG test three times with five minutes recover between trials in water and on dry land. The % MVC was significantly different (p < 0.05) for majority of the muscles tested during the TUG water compared to dry land. % MVC of RF [p = 0.003, t = 4.07]; BF [p = 0.000, t = 6.8]; TA [p = 0.005, t = 5.9]; and SOL [p = 0.048, t = 1.98]; RA [p = 0.007, t = 3.45]; and ES [p = 0.004, t = 3.78]. The muscle activation of the trunk and the lower limb [VM RF, BF, TA, GM and SOL] were lower in water compared to dry land, when performing a TUG test.
Background: The use of rehabilitation protocols carried out in water has been progressively increasing due to the favorable physical properties of the water. Electromyography allows one to register muscle activity even under water. Aim: To compare muscle activity between two groups (healthy young adults (HYA) and healthy older adults (HOA)) in two different environments (dry land and aquatic) using surface electromyography during the execution of four different test/functional movements. Methods: Analytical cross-sectional study. HYA and HOA carried out four functional tasks (Step Up and Down, Sit TO Stand test, Gait Initiation and Turns During Gait) in two different environments (dry land and aquatic). Absolute and relative muscle activation was compared between each group and between each environment. In addition, the stability of the measured was calculated through a test-retest (ICC 2:1). Results: Within the same environment there were significant differences between young and older adults in three of the four functional tasks. In contrast, in the gait initiation, hardly any significant differences were found between the two groups analysed, except for the soleus and the anterior tibial. Measurement stability ranged from good to excellent. Conclusions: Level of the musculature involvement presents an entirely different distribution when the test/functional task is performed on dry land or in water. There are differences both in the relative activation of the musculature and in the distribution of the partition of the muscles comparing older and young adults within the same environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.