Using two-sensor electrochemical recordings in freely moving rats, we examined the relationship between physiological and drug-induced oxygen fluctuations in the brain and periphery. Animals chronically implanted with oxygen sensors in the nucleus accumbens (NAc) and subcutaneous (SC) space were subjected to several mildly arousing stimuli (sound, tail-pinch and social interaction) and intravenous injections of cocaine and heroin. Arousing stimuli induced rapid increases in NAc oxygen levels followed by and correlated with oxygen decreases in the SC space. Therefore, cerebral vasodilation that increases cerebral blood flow and oxygen entry into brain tissue results from both direct neuronal activation and peripheral vasoconstriction, which redistributes arterial blood from periphery to the brain. The latter factor could also explain a similar pattern of oxygen responses found in the substantia nigra reticulata, suggesting hyperoxia as a global phenomenon with minor structural differences during early time intervals following the stimulus onset. While arousing stimuli and cocaine induced similar oxygen responses in the brain and SC space, heroin induced a biphasic down-up brain oxygen fluctuation associated with a monophasic oxygen decrease in the SC space. Oxygen decreases occurred more rapidly and stronger in the SC space, reflecting a drop in blood oxygen levels due to respiratory depression.
Spreading depression is characterized by slow, propagating wave of cellular depolarization (SD) and is wildly associated with migraine, stroke, and traumatic brain injury. Seizures and spreading depression (or spreading depolarization, SD) have long been reported to coincide in acute seizure induction experiments. However, SD has not been observed associated with spotaneous seizures in animal or clinical recordings. Recently, advances in acquisition systems for neurointensive care units have made routine observations of SD possible. In clinical epilepsy, SD has been suggested as a candidate mechanism for migraine/headache like events following seizures as well as for post-ictal generalized suppression. In animal models of epilepsy, seizure-induced brainstem SD has also been demonstrated as a mechanism of sudden unexplained death in epilepsy (SUDEP). The interplay between seizures and SD has also been suggested in computational models, where the two are components of the repetoir of neuronal activity.However, the spatiotemporal dynamics of SD with respect to spontaneous seizures in chronically epileptic brain remains ambigous. We analyzed continuous long-term DC sensitive EEG measurements from two fundamentally different animal models of chronic epilepsy. We found that SD was associated with approximately one-third of all spontaneous seizures in each model. Additionally, SDs participated in the organization of seizure clusters. These findings demonstrate that the underlying dynamic of epileptic events is broader than seizures alone.Significance StatementSpreading depression is characterized by slow, propagating wave of cellular spreading depolarization (SD) and is wildly associated with migraine, stroke, and traumatic brain injury. Although recently the linkage between SD and induced seizures has been recognized, the mechanistic relationship between SD and spontaneous seizures remains poorly understood. Here, we utilized long-term, stable, near-DC measurements of the brain activity in two fundamentally different animal models of epilepsy to investigate the SD-seizure interplay. We found that SD is a frequent phenomenon in the epileptic brain, in these models is associated with more than a third of all seizures, and appears to connect seizures in seizure clusters. Although in one model SD stereotypically propagates out from a single focus in the hippocampus, depression of the field-potentials is observed synchronously across much of the hippocampus. These observations highlight the value of stable DC measurements for accurate understanding of SD and its propagation. We found that spontaneous ictal events that include both seizures and SD are frequent in animal models of epilepsy. These findings suggest that SD could be a valuable target for treatment and control of epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.