SUMMARY
Using quantitative real-time PCR, the expression of mRNAs encoding three transport-related proteins and one putative housekeeping protein was analyzed in anterior and posterior gills of the euryhaline crab Chasmagnathus granulatus following transfer from isosmotic conditions (30‰salinity) to either dilute (2‰) or concentrated (45‰) seawater. Modest changes were observed in the abundance of mRNAs encoding the housekeeping protein arginine kinase and the vacuolar-type H+-ATPase B-subunit, both of which were highly expressed under all conditions. By contrast, the expression of Na+/K+-ATPaseα-subunit mRNA and Na+/K+/2Cl-cotransporter mRNA was strongly responsive to external salinity. During acclimation to dilute seawater, cotransporter mRNA increased 10-20-fold in posterior gills within the first 24 h while Na+/K+-ATPase α-subunit mRNA increased 35-55-fold. During acclimation to concentrated seawater, cotransporter mRNA increased 60-fold by 96 h and Na+/K+-ATPase α-subunit increased approximately 25-fold in posterior gills. Our results indicate a complex pattern of transcriptional regulation dependent upon the direction of salinity change and the developmental background of the gills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.