The head impulse, nystagmus type, test of skew (HINTS) protocol set a new paradigm to differentiate peripheral vestibular disease from stroke in patients with acute vestibular syndrome (AVS). The relationship between degree of truncal ataxia and stroke has not been systematically studied in patients with AVS. We studied a group of 114 patients who were admitted to a General Hospital due to AVS, 72 of them with vestibular neuritis (based on positive head impulse, abnormal caloric tests, and negative MRI) and the rest with stroke: 32 in the posterior inferior cerebellar artery (PICA) territory (positive HINTS findings, positive MRI) and 10 in the anterior inferior cerebellar artery (AICA) territory (variable findings and grade 3 ataxia, positive MRI). Truncal ataxia was measured by independent observers as grade 1, mild to moderate imbalance with walking independently; grade 2, severe imbalance with standing, but cannot walk without support; and grade 3, falling at upright posture. When we applied the HINTS protocol to our sample, we obtained 100% sensitivity and 94.4% specificity, similar to previously published findings. Only those patients with stroke presented with grade 3 ataxia. Of those with grade 2 ataxia (n = 38), 11 had cerebellar stroke and 28 had vestibular neuritis, not related to the patient’s age. Grade 2–3 ataxia was 92.9% sensitive and 61.1% specific to detect AICA/PICA stroke in patients with AVS, with 100% sensitivity to detect AICA stroke. In turn, two signs (nystagmus of central origin and grade 2–3 Ataxia) had 100% sensitivity and 61.1% specificity. Ataxia is less sensitive than HINTS but much easier to evaluate.
Introduction Neural networks are new methodological tools based on nonlinear models. They appear to be better at prediction and classification in biological systems than do traditional strategies such as logistic regression. This paper provides a practical example that contrasts both approaches within the setting of suspected sepsis in the emergency room. Methods The study population comprised patients with suspected bacterial infection as their main diagnosis for admission to the emergency room at two University-based hospitals. Mortality within the first 28 days from admission was predicted using logistic regression with the following variables: age, immunosuppressive systemic disease, general systemic disease, Shock Index, temperature, respiratory rate, Glasgow Coma Scale score, leucocyte counts, platelet counts and creatinine. Also, with the same input and output variables, a probabilistic neural network was trained with an adaptive genetic algorithm. The network had three neurone layers: 10 neurones in the input layer, 368 in the hidden layer and two in the output layer. Calibration was measured using the Hosmer-Lemeshow goodness-of-fit test and discrimination was determined using receiver operating characteristic curves. Results A total of 533 patients were recruited and overall 28-day mortality was 19%. The factors chosen by logistic regression (with their score in parentheses) were as follows: immunosuppressive systemic disease or general systemic disease (2), respiratory rate 24-33 breaths/min (1), respiratory rate ≥ 34 breaths/min (3), Glasgow Come Scale score ≤12 (3), Shock Index ≥ 1.5 (2) and temperature <38°C (2). The network included all variables and there were no significant differences in predictive ability between the approaches. The areas under the receiver operating characteristic curves were 0.7517 and 0.8782 for the logistic model and the neural network, respectively (P = 0.037). Conclusion A predictive model would be an extremely useful tool in the setting of suspected sepsis in the emergency room. It could serve both as a guideline in medical decision-making and as a simple way to select or stratify patients in clinical research. Our proposed model and the specific development method -either logistic regression or neural networks -must be evaluated and validated in an independent population.
The acute vestibular syndrome (AVS) is defined as sudden onset, continuous vertigo lasting >24 h with associated nystagmus, nausea, and vomiting, all of which are worsened with head movement [1].Differentiating between peripheral and central aetiologies can be challenging in the acute phase. In addition, recent studies highlight the presence of false negative "gold standard" magnetic resonance imaging scans in posterior circulation strokes, in the first 48 h following symptom onset [2]. A focused physical eye movement
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.