Enumeration of minimal correction sets (MCSes) of conjunctive normal form formulas is a central and highly intractable problem in infeasibility analysis of constraint systems. Often complete enumeration of MCSes is impossible due to both high computational cost and worst-case exponential number of MCSes. In such cases partial enumeration is sought for, finding applications in various domains, including axiom pinpointing in description logics among others. In this work we propose caching as a means of further improving the practical efficiency of current MCS enumeration approaches, and show the potential of caching via an empirical evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.