Wave energy converters (WECs) are commonly designed and analyzed using numerical models that combine multibody dynamics with hydrodynamic models based on the Cummins equation and linearized hydrodynamic coefficients. These modeling methods are attractive design tools because they are computationally inexpensive and do not require the use of highperformance computing resources necessitated by high-fidelity methods, such as Navier-Stokes computational fluid dynamics. Modeling hydrodynamics using linear coefficients assumes that the device undergoes small motions and that the wetted surface area of the devices is approximately constant. WEC devices, however, are typically designed to undergo large motions to maximize power extraction, calling into question the validity of assuming that linear hydrodynamic models accurately capture the relevant fluid-structure interactions.In this paper, we study how calculating buoyancy and Froude-Krylov forces from the instantaneous position of a WEC device changes WEC simulation results compared to simulations that use linear hydrodynamic coefficients. First, we describe the WEC-Sim tool used to perform simulations and how the ability to model instantaneous forces was incorporated into WEC-Sim. We then use a simplified one-body WEC device to validate the model and to demonstrate how accounting for these instantaneously calculated forces affects the accuracy of simulation results, such as device motions, hydrodynamic forces, and power generation.Other aspects of WEC-Sim code development and verification are presented in a companion paper [1] that is also being presented at OMAE2014. INTRODUCTIONWave energy is the most abundant source of marine hydrokinetic energy in the United States and is a plentiful resource around the globe [2]. Recent estimates indicate that the U.S. wave energy resource is 2,600 TWh/year [3]. If it is possible to extract even a small fraction of this energy, there is potential to satisfy a significant amount of U.S. electricity demand [4]. This finding has stimulated commercial and governmental interest in developing wave energy converter (WEC) technologies, and indicates that wave energy could play a significant role in the world's renewable energy portfolio for years to come. Nevertheless, WEC devices are at an early stage of development, corresponding to technology readiness levels (TRLs) 3 through 5, and are not yet a commercially viable technology.Over the past several decades, open-source numerical modeling tools have helped the wind turbine industry achieve commercial viability by enabling the rapid development, analysis, and certification of system designs. The recent emergence of the WEC industry has created a need for a similar set of WEC design and analysis tools that enable the advancement of WEC technologies. Several companies have developed WEC modeling tools, such as WaveDyn, OrcaFlex, and AQWA, that meet many of the needs of the WEC research and development community. Previous experience at the National Renewable Energy Laboratory (NR...
To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests. INTRODUCTIONEven though wave energy converters (WECs) have been conceptualized and patented for over a century, most WEC developers are in technology readiness levels (TRLs) 3 through 5, corresponding to basic research and development [1][2][3]. Several developers have deployed scaled devices in the open ocean, and there have been a few full-scale grid connected deployments, such as the WaveGen Limpet in Islay and the Ocean Power Technologies (OPT) PowerBuoy in Hawaii. The industry, however, has yet to reach commercial viability, corresponding to TRL 9. As a result, WECs remain a nascent technology, and are highly dependent on numerical modeling and experimental testing to develop innovative designs and advanced control strategies.
WEC-Sim (Wave Energy Converter-SIMulator) is an opensource wave energy converter (WEC) code capable of simulating WECs of arbitrary device geometry subject to operational waves. The code is developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics, and relies on Boundary Element Method (BEM) codes to obtain hydrodynamic coefficients such as added mass, radiation damping, and wave excitation. WEC-Sim Version 1.0, released in Summer 2014, models WECs as a combination of rigid bodies, joints, linear power take-offs (PTOs), and mooring systems. This paper outlines the development of PTO-Sim (Power Take Off-SIMulator), the WEC-Sim module responsible for accurately modeling a WEC's conversion of mechanical power to electrical power through its PTO system. PTO-Sim consists of a Simulink library of PTO component blocks that can be linked together to model different PTO systems. Two different applications of PTO-Sim will be given in this paper: a hydraulic power take-off system model, and a direct drive power take-off system model. ators, pistons, and accumulators. Two different applications of PTO-Sim will be given in this paper: a hydraulic power take-off system model, and a linear direct drive power take-off system model.
The Wave Energy Converter Simulator (WEC-Sim) is an open-source code jointly developed by Sandia National Laboratories and the National Renewable Energy Laboratory. It is used to model wave energy converters subjected to operational and extreme waves. In order for the WEC-Sim code to be beneficial to the wave energy community, code verification and physical model validation is necessary. This paper describes numerical modeling of the wave tank testing for the 1:33-scale experimental testing of the floating oscillating surge wave energy converter. The comparison between WEC-Sim and the Phase 1 experimental data set serves as code validation. This paper is a follow-up to the WEC-Sim paper on experimental testing, and describes the WEC-Sim numerical simulations for the floating oscillating surge wave energy converter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.