Severe COVID-19 patients develop acute respiratory distress syndrome that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that neutrophil extracellular traps (NETs) have been described as important mediators of tissue damage in inflammatory diseases, we investigated whether NETs would be involved in COVID-19 pathophysiology. A cohort of 32 hospitalized patients with a confirmed diagnosis of COVID-19 and healthy controls were enrolled. The concentration of NETs was augmented in plasma, tracheal aspirate, and lung autopsies tissues from COVID-19 patients, and their neutrophils released higher levels of NETs. Notably, we found that viable SARS-CoV-2 can directly induce the release of NETs by healthy neutrophils. Mechanistically, NETs triggered by SARS-CoV-2 depend on angiotensin-converting enzyme 2, serine protease, virus replication, and PAD-4. Finally, NETs released by SARS-CoV-2–activated neutrophils promote lung epithelial cell death in vitro. These results unravel a possible detrimental role of NETs in the pathophysiology of COVID-19. Therefore, the inhibition of NETs represents a potential therapeutic target for COVID-19.
Introduction: Coronavirus disease 2019 (COVID-19) causes a hypercoagulable state. Several autopsy studies have found microthrombi in pulmonary circulation. Methods: In this randomized, open-label, phase II study, we randomized COVID-19 patients requiring mechanical ventilation to receive either therapeutic enoxaparin or the standard anticoagulant thromboprophylaxis. We evaluated the gas exchange over time through the ratio of partial pressure of arterial oxygen (PaO2) to the fraction of inspired oxygen (FiO2) at baseline, 7, and 14 days after randomization, the time until successful liberation from mechanical ventilation, and the ventilator-free days. Results: Ten patients were assigned to the therapeutic enoxaparin and ten patients to prophylactic anticoagulation. There was a statistically significant increase in the PaO2/FiO2 ratio over time in the therapeutic group (163 [95% confidence interval-CI 133-193] at baseline, 209 [95% CI 171-247] after 7 days, and 261 [95% CI 230-293] after 14 days), p = 0.0004. In contrast, we did not observe this improvement over time in the prophylactic group (184 [95% CI 146-222] at baseline, 168 [95% CI 142-195] after 7 days, and 195 [95% CI 128-262] after 14 days), p = 0.487. Patients of the therapeutic group had a higher ratio of successful liberation from mechanical ventilation (hazard ratio: 4.0 [95% CI 1.035-15.053]), p = 0.031 and more ventilator-free days (15 days [interquartile range IQR 6-16] versus 0 days [IQR 0-11]), p = 0.028 when compared to the prophylactic group. Conclusion: Therapeutic enoxaparin improves gas exchange and decreases the need for mechanical ventilation in severe COVID-19. Trial registration: REBEC RBR-949z6v.
ObjectiveTo evaluate whether the addition of colchicine to standard treatment for COVID-19 results in better outcomes.DesignWe present the results of a randomised, double-blinded, placebo-controlled clinical trial of colchicine for the treatment of moderate to severe COVID-19, with 75 patients allocated 1:1 from 11 April to 30 August 2020. Colchicine regimen was 0.5 mg thrice daily for 5 days, then 0.5 mg twice daily for 5 days. The primary endpoints were the need for supplemental oxygen, time of hospitalisation, need for admission and length of stay in intensive care unit and death rate.ResultsSeventy-two patients (36 for placebo and 36 for colchicine) completed the study. Median (and IQR) time of need for supplemental oxygen was 4.0 (2.0–6.0) days for the colchicine group and 6.5 (4.0–9.0) days for the placebo group (p<0.001). Median (IQR) time of hospitalisation was 7.0 (5.0–9.0) days for the colchicine group and 9.0 (7.0–12.0) days for the placebo group (p=0.003). At day 2, 67% versus 86% of patients maintained the need for supplemental oxygen, while at day 7, the values were 9% versus 42%, in the colchicine and the placebo groups, respectively (log rank; p=0.001). Two patients died, both in placebo group. Diarrhoea was more frequent in the colchicine group (p=0.26).ConclusionColchicine reduced the length of both, supplemental oxygen therapy and hospitalisation. The drug was safe and well tolerated. Once death was an uncommon event, it is not possible to ensure that colchicine reduced mortality of COVID-19.Trial registration numberRBR-8jyhxh.
Dengue viruses were shown to cause cardiac disease with clinical manifestations ranging from mild elevation of biomarkers to myocarditis and/or pericarditis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.