Abstract-Spark has become one of the main options for large-scale analytics running on top of shared-nothing clusters. This work aims to make a deep dive into the parallelism configuration and shed light on the behavior of parallel spark jobs. It is motivated by the fact that running a Spark application on all the available processors does not necessarily imply lower running time, while may entail waste of resources. We first propose analytical models for expressing the running time as a function of the number of machines employed. We then take another step, namely to present novel algorithms for configuring dynamic partitioning with a view to minimizing resource consumption without sacrificing running time beyond a user-defined limit. The problem we target is NP-hard. To tackle it, we propose a greedy approach after introducing the notions of dependency graphs and of the benefit from modifying the degree of partitioning at a stage; complementarily, we investigate a randomized approach. Our polynomial solutions are capable of judiciously use the resources that are potentially at user's disposal and strike interesting trade-offs between running time and resource consumption. Their efficiency is thoroughly investigated through experiments based on real execution data.
We designed and implemented a parallel visualisation system for the analysis of large scale time-dependent particle type data. The particular challenge we address is how to analyse a high performance computation style dataset when a visual representation of the full set is not possible or useful, and one is only interested in finding and inspecting smaller subsets that fulfil certain complex criteria. We used Paraview as the user interface, which is a familiar tool for many HPC users, runs in parallel, and can be conveniently extended. We distributed the data in a supercomputing environment using the Hadoop file system. On top of it, we run Hive or Impala, and implemented a connection between Paraview and them that allows us to launch programmable SQL queries in the database directly from within Paraview. The queries return a Paraview-native VTK object that fits directly into the Paraview pipeline. We find good scalability and response times. In the typical supercomputer environment (like the one we used for implementation) the queue and management system make it difficult to keep local data in between sessions, which imposes a bottleneck in the data loading stage. This makes our system most useful when permanently installed on a dedicated cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.