Rheumatoid arthritis-associated joint pain is frequently observed independent of disease activity, suggesting unidentified pain mechanisms. We demonstrate that antibodies binding to cartilage, specific for collagen type II (CII) or cartilage oligomeric matrix protein (COMP), elicit mechanical hypersensitivity in mice, uncoupled from visual, histological and molecular indications of inflammation. Cartilage antibody-induced pain-like behavior does not depend on complement activation or joint inflammation, but instead on tissue antigen recognition and local immune complex (IC) formation. smFISH and IHC suggest that neuronal Fcgr1 and Fcgr2b mRNA are transported to peripheral ends of primary afferents. CII-ICs directly activate cultured WT but not FcRγ chain-deficient DRG neurons. In line with this observation, CII-IC does not induce mechanical hypersensitivity in FcRγ chain-deficient mice. Furthermore, injection of CII antibodies does not generate pain-like behavior in FcRγ chain-deficient mice or mice lacking activating FcγRs in neurons. In summary, this study defines functional coupling between autoantibodies and pain transmission that may facilitate the development of new disease-relevant pain therapeutics.
These results suggest that increased extracellular glutamate in the LC consequent to down-regulation of GLT-1 contributes to LC dysfunction and impaired pain-evoked endogenous analgesia after nerve injury.
IntroductionClinical and preclinical studies have shown that supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs) reduce joint destruction and inflammation present in rheumatoid arthritis (RA). However, the effects of individual ω-3 PUFAs on chronic arthritic pain have not been evaluated to date. Thus, our aim in this study was to examine whether purified docosahexaenoic acid (DHA, an ω-3 PUFA) reduces spontaneous pain-related behavior and knee edema and improves functional outcomes in a mouse model of knee arthritis.MethodsUnilateral arthritis was induced by multiple injections of Complete Freund’s Adjuvant (CFA) into the right knee joints of male ICR adult mice. Mice that received CFA injections were then chronically treated from day 15 until day 25 post–initial CFA injection with oral DHA (10, 30 and 100 mg/kg daily) or intraarticular DHA (25 and 50 μg/joint twice weekly). Spontaneous flinching of the injected extremity (considered as spontaneous pain-related behavior), vertical rearing and horizontal exploratory activity (considered as functional outcomes) and knee edema were assessed. To determine whether an endogenous opioid mechanism was involved in the therapeutic effect of DHA, naloxone (NLX, an opioid receptor antagonist, 3 mg/kg subcutaneously) was administered in arthritic mice chronically treated with DHA (30 mg/kg by mouth) at day 25 post–CFA injection.ResultsThe intraarticular CFA injections resulted in increasing spontaneous flinching and knee edema of the ipsilateral extremity as well as worsening functional outcomes as time progressed. Chronic administration of DHA, given either orally or intraarticularly, significantly improved horizontal exploratory activity and reduced flinching behavior and knee edema in a dose-dependent manner. Administration of NLX did not reverse the antinociceptive effect of DHA.ConclusionsTo the best of our knowledge, this report is the first to demonstrate DHA’s antinociceptive and anti-inflammatory effects as individual ω-3 PUFAs following sustained systemic and intraarticular administration in a mouse model of CFA-induced knee arthritis. The results suggest that DHA treatment may offer a new therapeutic approach to alleviate inflammation as well as a beneficial effect on pain-related functional disabilities in RA patients.
Recent studies in neuron-glial metabolic coupling have shown that, in the CNS, astrocytes and oligodendrocytes support neurons with energy-rich lactate/pyruvate via monocarboxylate transporters (MCTs). The presence of such transporters in the PNS, in both Schwann cells and neurons, has prompted us to question if a similar interaction may be present. Here we describe the generation and characterization of conditional knockout mouse models where MCT1 or MCT4 is specifically deleted in Schwann cells (named MCT1 and MCT4 cKO). We show that MCT1 cKO and MCT4 cKO mice develop normally and that myelin in the PNS is preserved. However, MCT1 expressed by Schwann cells is necessary for long-term maintenance of motor end-plate integrity as revealed by disrupted neuromuscular innervation in mutant mice, while MCT4 appears largely dispensable for the support of motor neurons. Concomitant to detected structural alterations, lumbar motor neurons from MCT1 cKO mice show transcriptional changes affecting cytoskeletal components, transcriptional regulators, and mitochondria related transcripts, among others. Together, our data indicate that MCT1 plays a role in Schwann cell-mediated maintenance of motor end-plate innervation thus providing further insight into the emerging picture of the biology of the axon-glia metabolic crosstalk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.