The greatest challenge the world is facing today is to win the battle against COVID-19 pandemic as soon as possible. Until a vaccine is available, personal protection, social distancing, and disinfection are the main tools against SARS-CoV-2. Although it is quite infectious, the SARS-CoV-2 virus itself is an enveloped virus that is relatively fragile because its protective fatty layer is sensitive to heat, ultraviolet radiation, and certain chemicals. However, heat and liquid treatments can damage some materials, and ultraviolet light is not efficient in shaded areas, so other disinfection alternatives are required to allow safe re-utilization of materials and spaces. As of this writing, evidences are still accumulating for the use of ozone gas as a disinfectant for sanitary materials and ambient disinfection in indoor areas. This paper reviews the most relevant results of virus disinfection by the application of gaseous ozone. The review covers disinfection treatments of both air and surfaces carried out in different volumes, which varies from small boxes and controlled chambers to larger rooms, as a base to develop future ozone protocols against COVID-19. Published papers have been critically analyzed to evaluate trends in the required ozone dosages, as a function of relative humidity (RH), contact time, and viral strains. The data have been classified depending on the disinfection objective and the volume and type of the experimental set-up. Based on these data, conservative dosages and times to inactivate the SARS-CoV-2 are estimated. In small chambers, 10–20 mg ozone/m3 over 10 to 50 min can be sufficient to significantly reduce the virus load of personal protection equipment. In large rooms, 30 to 50 mg ozone/m3 would be required for treatments of 20–30 min. Maximum antiviral activity of ozone is achieved at high humidity, while the same ozone concentrations under low RH could result inefficient. At these ozone levels, safety protocols must be strictly followed. These data can be used for reducing significantly the viral load although for assuring a safe disinfection, the effective dosages under different conditions need to be confirmed with experimental data.
Extending the limits of paper recycling by increasing the number of recycling cycles results in decreased mechanical properties due to the irreversible hornification of cellulose fibers. This process alters the fiber structure and properties because of the repeated chemical and mechanical treatments that occur during wetting and drying. As a result, poor tensile strength is the main source of customer complaints to paper manufacturers. Cellulose nanofibers (CNF) from bleached eucalyptus and pine pulps were investigated as potential strength additives because of their proven contribution to interfiber bonding. These results were compared to the results obtained using different families of strength additives. The effects on the mechanical properties of recycled old corrugated containers were studied by measuring bursting, tensile, and short span compressive strength. Cellulose nanofibers and cationic polyacrylamide (cPAM) improved the mechanical strength properties when they were added at doses around 4 wt.%. A combination of CNF and cPAM was also tested. The effects of the combined additives were not as high as expected compared to the results achieved individually. The CNF from pine pulp resulted in the highest increase in bursting index when combined with cPAM, achieving an increase of over 93%. The combination of CNF from eucalyptus pulp and cPAM increased the bursting index over 60%.
Despite the extraordinary properties of nanocellulose (NC), as confirmed through two decades of exhaustive research, addressing an array of potential applications, the NC market is still far from reaching its full potential. Among the main causes is the lack of process-adapted measuring tools capable of characterizing NC, at acceptable speed and reliability, to meet the industrial demands in a cost-effective way. Therefore, reliable characterization methodologies of NC and new standards are of paramount importance in ensuring reproducible research results and quality control specifications for present and future NC products and applications. Furthermore, the successful industrial use of NC products depends on critical parameters that are still being identified and studied. This review paper aims to identify some of the current drawbacks and limitations in NC characterization that hinder their commercial deployment. Moreover, important challenges related to characterization and new opportunities for future research in this field are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.