Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts are functional membrane microdomains with highly and tightly packed lipid molecules. These regions enriched in sphingolipids and cholesterol recruit and concentrate several receptors and molecules involved in pathogen recognition and cellular signaling. Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans (HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS), CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction with the viral spike protein. FDA-approved drugs such as statins, metformin, hydroxychloroquine, and cyclodextrins (methyl-β-cyclodextrin) can disrupt cholesterol-rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the identification of novel therapeutic targets.
During flavivirus infection, some viral proteins move to the nucleus and cellular components are relocated from the nucleus to the cytoplasm. Thus, the integrity of the main regulator of the nuclear-cytoplasmic transport, the nuclear pore complex (NPC), was evaluated during infection with dengue virus (DENV) and Zika virus (ZIKV). We found that while during DENV infection the integrity and distribution of at least three nucleoporins (Nup), Nup153, Nup98, and Nup62 were altered, during ZIKV infection, the integrity of TPR, Nup153, and Nup98 were modified. In this work, several lines of evidence indicate that the viral serine protease NS2B3 is involved in Nups cleavage. First, the serine protease inhibitors, TLCK and Leupeptin, prevented Nup98 and Nup62 cleavage. Second, the transfection of DENV and ZIKV NS2B3 protease was sufficient to inhibit the nuclear ring recognition detected in mock-infected cells with the Mab414 antibody. Third, the mutant but not the active (WT) protease was unable to cleave Nups in transfected cells. Thus, here we describe for the first time that the NS3 protein from flavivirus plays novel functions hijacking the nuclear pore complex, the main controller of the nuclear-cytoplasmic transport.
Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
The Dengue (DENV) and zika (ZIKV) virus infections are currently a public health concern. At present, there is no treatment or a safe and effective vaccine for these viruses. Hence, the development of new strategies as host-directed therapy is required. In this sense, Metformin (MET), an FDA-approved drug used for the treatment of type 2 diabetes, has shown an anti-DENV effect in vitro by activating AMPK and reducing HMGCR activity. In this study, MET treatment was evaluated during in vitro and in vivo ZIKV infection and compared to MET treatment during DENV infection. Our results demonstrated that MET has a broad in vitro antiviral spectrum. MET inhibited ZIKV infection in different cell lines, but it was most effective in inhibiting DENV and yellow fever virus (YFV) infection in Huh-7 cells. However, the drug failed to protect against ZIKV infection when AG129 immunodeficient mice were used as in vivo model. Interestingly, MET increased DENV-infected male mice's survival time, reducing the severe signs of the disease. Together, these findings indicate that, although MET was an effective antiviral agent to inhibit in vitro and in vivo DENV infection, it could only inhibit in vitro ZIKV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.