Cryo-EM maps are valuable sources of information for protein structure modeling. However, due to the loss of contrast at high frequencies, they generally need to be post-processed to improve their interpretability. Most popular approaches, based on global B-factor correction, suffer from limitations. For instance, they ignore the heterogeneity in the map local quality that reconstructions tend to exhibit. Aiming to overcome these problems, we present DeepEMhancer, a deep learning approach designed to perform automatic post-processing of cryo-EM maps. Trained on a dataset of pairs of experimental maps and maps sharpened using their respective atomic models, DeepEMhancer has learned how to post-process experimental maps performing masking-like and sharpening-like operations in a single step. DeepEMhancer was evaluated on a testing set of 20 different experimental maps, showing its ability to reduce noise levels and obtain more detailed versions of the experimental maps. Additionally, we illustrated the benefits of DeepEMhancer on the structure of the SARS-CoV-2 RNA polymerase.
In the past few years, 3D electron microscopy (3DEM) has undergone a revolution in instrumentation and methodology. One of the central players in this wide-reaching change is the continuous development of image processing software. Here we present Scipion, a software framework for integrating several 3DEM software packages through a workflow-based approach. Scipion allows the execution of reusable, standardized, traceable and reproducible image-processing protocols. These protocols incorporate tools from different programs while providing full interoperability among them. Scipion is an open-source project that can be downloaded from http://scipion.cnb.csic.es.
Plants interpret a decrease in the red to far-red light ratio (R:FR) as a sign of impending shading by neighboring vegetation. This triggers a set of developmental responses known as shade avoidance syndrome. One of these responses is reduced branching through suppression of axillary bud outgrowth. The Arabidopsis thaliana gene BRANCHED1 (BRC1), expressed in axillary buds, is required for branch suppression in response to shade. Unlike wild-type plants, brc1 mutants develop several branches after a shade treatment. BRC1 transcription is positively regulated 4 h after exposure to low R:FR. Consistently, BRC1 is negatively regulated by phytochrome B. Transcriptional profiling of wild-type and brc1 buds of plants treated with simulated shade has revealed groups of genes whose mRNA levels are dependent on BRC1, among them a set of upregulated abscisic acid response genes and two networks of cell cycle– and ribosome-related downregulated genes. The downregulated genes have promoters enriched in TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) binding sites, suggesting that they could be transcriptionally regulated by TCP factors. Some of these genes respond to BRC1 in seedlings and buds, supporting their close relationship with BRC1 activity. This response may allow the rapid adaptation of plants to fluctuations in the ratio of R:FR light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.