This paper introduces a new Windowed Green Function (WGF) method for the numerical integral-equation solution of problems of electromagnetic scattering by obstacles in presence of dielectric or conducting half-planes. The WGF method, which is based on use of smooth windowing functions and integral kernels that can be expressed directly in terms of the free-space Green function, does not require evaluation of expensive Sommerfeld integrals. The proposed approach is fast, accurate, flexible and easy to implement. In particular, straightforward modifications of existing (accelerated or unaccelerated) solvers suffice to incorporate the WGF capability. The mathematical basis of the method is simple: the method relies on a certain integral equation posed on the union of the boundary of the obstacle and a small flat section of the interface between the penetrable media. Numerical experiments demonstrate that both the near-and far-field errors resulting from the proposed approach decrease faster than any negative power of the window size. In the examples considered in this paper the proposed method is up to thousands of times faster, for a given accuracy, than a corresponding method based on the layer-Green-function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.