The natively unfolded nature of intrinsically disordered proteins (IDPs) relies on several physicochemical principles, of which the balance between a low sequence hydrophobicity and a high net charge appears to be critical. Under this premise, it is well-known that disordered proteins populate a defined region of the charge–hydropathy (C–H) space and that a linear boundary condition is sufficient to distinguish between folded and disordered proteins, an approach widely applied for the prediction of protein disorder. Nevertheless, it is evident that the C–H relation of a protein is not unalterable but can be modulated by factors extrinsic to its sequence. Here, we applied a C–H-based analysis to develop a computational approach that evaluates sequence disorder as a function of pH, assuming that both protein net charge and hydrophobicity are dependent on pH solution. On that basis, we developed DispHred, the first pH-dependent predictor of protein disorder. Despite its simplicity, DispHred displays very high accuracy in identifying pH-induced order/disorder protein transitions. DispHred might be useful for diverse applications, from the analysis of conditionally disordered segments to the synthetic design of disorder tags for biotechnological applications. Importantly, since many disorder predictors use hydrophobicity as an input, the here developed framework can be implemented in other state-of-the-art algorithms.
Summary Polypeptides are exposed to changing environmental conditions that modulate their intrinsic aggregation propensities. Intrinsically disordered proteins (IDPs) constitutively expose their aggregation determinants to the solvent, thus being especially sensitive to its fluctuations. However, solvent conditions are often disregarded in computational aggregation predictors. We recently developed a phenomenological model to predict IDPs' solubility as a function of the solution pH, which is based on the assumption that both protein lipophilicity and charge depend on this parameter. The model anticipated solubility changes in different IDPs accurately. In this application note, we present SolupHred, a web-based interface that implements the aforementioned theoretical framework into a predictive tool able to compute IDPs aggregation propensities as a function of pH. SolupHred is the first dedicated software for the prediction of pH-dependent protein aggregation. Availability and Implementation The SolupHred web server is freely available for academic users at: https://ppmclab.pythonanywhere.com/SolupHred. It is platform-independent and does not require previous registration. Supplementary Information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.