A depth-based face recognition algorithm specially adapted to high range resolution data acquired by the new Microsoft Kinect 2 sensor is presented. A novel descriptor called Depth Local Quantized Pattern descriptor has been designed to make use of the extended range resolution of the new sensor. This descriptor is a substantial modification of the popular Local Binary Pattern algorithm. One of the main contributions is the introduction of a quantification step, increasing its capacity to distinguish different depth patterns. The proposed descriptor has been used to train and test a Support Vector Machine classifier, which has proven to be able to accurately recognize different people faces from a wide range of poses. In addition, a new depth-based face database acquired by the new Kinect 2 sensor have been created and made public to evaluate the proposed face recognition system.
An automatic machine learning strategy for computing the 3D structure of monocular images from a single image query using Local Binary Patterns is presented. The 3D structure is inferred through a training set composed by a repository of color and depth images, assuming that images with similar structure present similar depth maps. Local Binary Patterns are used to characterize the structure of the color images. The depth maps of those color images with a similar structure to the query image are adaptively combined and filtered to estimate the final depth map. Using public databases, promising results have been obtained outperforming other state-of-theart algorithms and with a computational cost similar to the most efficient 2D-to-3D algorithms.
People positioning and tracking in 3D indoor environments are challenging tasks due to background clutter and occlusions. Current works are focused on solving people occlusions in low-cluttered backgrounds, but fail in high-cluttered scenarios, specially when foreground objects occlude people. In this paper, a novel 3D people positioning and tracking system is presented, which shows itself robust to both possible occlusion sources: static scene objects and other people. The system holds on a set oí múltiple cameras with partially overlapped fields of view. Moving regions are segmented independently in each camera stream by means oí a new background modeling strategy based on Gabor filters. People detection is carried out on these segmentations through a template-based correlation strategy. Detected people are tracked independently in each camera view by means oí a graph-based matching strategy, which estimates the best correspondences between consecutive people segmentations. Finally, 3D tracking and positioning of people is achieved by geometrical consistency analysis over the tracked 2D candidates, using head position (instead of object centroids) to increase robustness to foreground occlusions.
Although there has been a significant proliferation of 3D displays in the last decade, the availability of 3D content is still scant compared to the volume of 2D data. To fill this gap, automatic 2D to 3D conversion algorithms are needed. In this paper, we present an automatic approach, inspired by machine learning principles, for estimating the depth of a 2D image. The depth of a query image is inferred from a dataset of color and depth images by searching this repository for images that are photometrically similar to the query. We measure the photometric similarity between two images by comparing their GIST descriptors. Since not all regions in the query image require the same visual attention, we give more weight in the GIST-descriptor comparison to regions with high saliency. Subsequently, we fuse the depths of the most similar images and adaptively filter the result to obtain a depth estimate. Our experimental results indicate that the proposed algorithm outperforms other state-of-the-art approaches on the commonlyused Kinect-NYU dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.