The aim of this study was to evaluate clinically, histologically and histometrically the use of anorganic bovine bone matrix (i.e. Bio-oss) as a grafting material for maxillary sinus augmentation procedures. In 4 adult male rhesus monkeys (i.e. Macaca mulatta) the 1st, 2nd and 3rd maxillary molars on one side of the jaws were extracted. The remaining bone between the alveolar crest and the bottom of the sinus was then reduced to 3-4 mm. After 3 months, maxillary sinus augmentation procedures were performed on one side of the jaws in each monkey and the sinuses were grafted with the bovine bone matrix. At that time, 2 IMZ pure titanium plasma coated implants were immediately placed into the augmented sinuses (i.e. simultaneous implants-loaded group). After 4 months, 2 additional similar implants were placed into these previously augmented sinuses (i.e. delayed implants-loaded group). Four months later, the abutment connection was performed and all 4 implants were loaded with a gold-alloy bridge for 6 months (i.e. until sacrifice of the animals). The contralateral side of each monkey received the same treatment with the exception that the extractions were performed 7 months after those in the opposite side and that the implants in this side were not loaded. Thus, 2 additional study groups (i.e. simultaneous implants-unloaded group and delayed implants-unloaded group) were obtained. Clinically, all loaded implants were stable at the day of sacrifice. Histologically, the grafted sinuses exhibited significant bone formation with integration of the bovine bone matrix particles to the new bone. Direct mineralized bone-to-implant contact was greater for the delayed implant placement groups than for the implants installed simultaneously with the sinus augmentation. Furthermore, the percentage of direct mineralized bone-to-implant contact was greater in the residual bone than in the augmented area. It was concluded that the anorganic bovine bone matrix facilitated bone formation and implant osseointegration in the augmented sinuses and that the delayed implant placement in combination with the sinus augmentation procedure seemed to be preferable.
The relationship between implant surfaces and decontamination treatments was studied in vitro to determine which implant surfaces were most effectively decontaminated, and which treatment was most effective for treating a particular implant surface. The implants used in the study were press fit cylindrical titanium units with machined, plasma sprayed, and hydroxyapatite-coated surfaces. Radioactive endotoxin (125I-LPS) was prepared from Porphyromonas gingivalis (ATCC 33277). Implants were coated with 125I-LPS and treated by burnishing with a cotton pellet soaked in water, citric acid solution (CA), or 0.12% chlorhexidine (CHX); or treated with an air-powder abrasive (AIR). Radioactivity was determined after each of two treatment cycles. The results for each implant surface were analyzed using ANOVA to determine differences between treatments. The remaining 125I-LPS after two treatment cycles were: for machined implants AIR < CA, with AIR = water = CHX and water = CHX = CA; for plasma sprayed implants AIR < water = CHX = CA; for hydroxyapatite implants AIR = CA < water < CHX. In evaluating treatment modalities, it was found that machined implants were decontaminated more effectively than the other surfaces by all treatments; the exception was citric acid treatment which was equally effective on either machined or hydroxyapatite surfaces. These results indicate that machined implants (without surface coating) are most readily decontaminated by a variety of methods; this characteristic should be considered, since long-term success of implants may involve treating periimplantitis. Further, the results indicate that air abrasives are effective for decontaminating implant surface, with the exception that hydroxyapatite coated surfaces can be treated equally with air abrasives or citric acid.
The periosteum has been referred to as a protective barrier in the regeneration of bone defects. The objective of this study was to determine the contribution of periosteum as a natural barrier to bone formation in guided bone regeneration. Mucoperiosteal flaps were elevated bilaterally on the buccal aspect of the mandibular angle in 5 cynomolgus monkeys. Bleeding was induced by perforating the cortical bone. A hemispherical titanium mesh was fixed over the areas thus creating a void 5 mm in height between the mesh and the bone surface. One one side the mesh was covered with an ePTFE membrane (test side). The contralateral side did not receive further treatment (control side). After 4 month healing, histomorphometric analyses were used to determine the percentage of new bone in the void underneath the mesh, and the ratio between mineralized tissue and marrow spaces in new and old bone. The mean percentage of new bone tissue was 77.2 +/- 7.5% for the test sides and 68.6 +/- 8.4% for the control sides (P = 0.018, t-test). This new bone contained 80.0 +/- 3.6% mineralized tissue in the test group and 82.5 +/- 5.0% in the control group (P > 0.05, t-test). In both groups the newly formed bone exhibited significantly less mineralized tissue than the old bone (P < 0.05, t-test). It is concluded from this study that new bone formation was enhanced by the additional use of an ePTFE membrane under a periosteum-lined mucoperiosteal flap when space maintenance was excluded as a critical factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.