Molecular methods based on the 16S rRNA gene sequence are used widely in microbial ecology to reveal the diversity of microbial populations in environmental samples. Here we show that a new PCR method using an engineered polymerase and 10-nucleotide "miniprimers" expands the scope of detectable sequences beyond those detected by standard methods using longer primers and Taq polymerase. After testing the method in silico to identify divergent ribosomal genes in previously cloned environmental sequences, we applied the method to soil and microbial mat samples, which revealed novel 16S rRNA gene sequences that would not have been detected with standard primers. Deeply divergent sequences were discovered with high frequency and included representatives that define two new division-level taxa, designated CR1 and CR2, suggesting that miniprimer PCR may reveal new dimensions of microbial diversity.
Cryptococcus neoformans and Cryptococcus gattii are found in distinct environments with some overlap around different parts of the world. However, no systematic surveys of these two pathogens have been reported from Puerto Rico, a tropical island uniquely situated between mainland USA and countries in South America. We carried out an exhaustive environmental survey in southwestern Puerto Rico for pathogenic Cryptococcus species. Twenty-two presumptive isolates of C. gattii from cacti and tree detritus were characterized in detail by physiological and molecular methods and seventeen strains were confirmed as C. gattii. Cryptococcus gattii isolates were haploid and majority of them were MATa [corrected] strains. Sixteen out of seventeen C. gattii isolates belonged to VGII/AFLP6 genotype while one isolate was a VGIV/AFLP7 genotype. The results are significant as Puerto Rico strains are distinct from VGIII/AFLP5 strains reported from Southern California, but similar to C. gattii VGII/AFLP6 molecular type implicated in recent outbreaks of cryptococcosis in Pacific Northwest and British Columbia, Canada, but different in its M13 fingerprinting, and a common genotype in South America.
In this study, the in vivo function and properties of two cytochrome c maturation proteins, CcmF and CcmH from Rhodobacter sphaeroides, were analyzed. Strains lacking CcmH or both CcmF and CcmH are unable to grow under anaerobic conditions where c-type cytochromes are required, demonstrating their critical role in the assembly of these electron carriers. Consistent with this observation, strains lacking both CcmF and CcmH are deficient in c-type cytochromes when assayed under permissive growth conditions. In contrast, under permissive growth conditions, strains lacking only CcmH contain several soluble and membrane-bound c-type cytochromes, albeit at reduced levels, suggesting that this bacterium has a CcmH-independent route for their maturation. In addition, the function of CcmH that is needed to support anaerobic growth can be replaced by adding cysteine or cystine to growth media. The ability of exogenous thiol compounds to replace CcmH provides the first physiological evidence for a role of this protein in thiol chemistry during c-type cytochrome maturation. The properties of R. sphaeroides cells containing translational fusions between CcmF and CcmH and either Escherichia coli alkaline phosphatase or -galactosidase suggest that they are each integral cytoplasmic membrane proteins with their presumed catalytic domains facing the periplasm. Analysis of CcmH shows that it is synthesized as a higher-molecular-weight precursor protein with an N-terminal signal sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.