PCR analysis of tRNA intergenic spacer (tDNA-PCR) and of the 16S-23S internal transcribed spacer (ITS-PCR) and random amplified polymorphic DNA (RAPD) analysis were evaluated for their usefulness in characterization of Enterobacter cloacae strains isolated from both clinical origins and vaccine microbial contamination. tDNA-PCR presented specific and reproducible patterns for Enterobacter sakazakii ATCC 29004, Enterobacter aerogenes ATCC 13048, and Enterobacter cloacae ATCC 13047 and 23355 that presented the same profile for all 16 E. cloacae isolates, offering an alternative tool for species-level identification. ITS-PCR and RAPD analysis yielded completely different banding patterns for the 20 strains studied, except for E. cloacae strains isolated from different batches of vaccine that exhibited a unique pattern, suggesting contamination by the same strain. The combined use of tDNA-PCR and ITS-PCR in a one-step protocol allows accurate identification and typing of E. cloacae strains a few hours after the colony has been isolated.
Early diagnosis, efficient clinical support, and proper antifungal therapy are essential to reduce death and sequels caused by cryptococcosis. The emergence of resistance to the antifungal drugs commonly used for cryptococcosis treatment is an important issue of concern. Thus, the in vitro antifungal susceptibility of clinical strains from northern Brazil, including C. neoformans VNI (n = 62) and C. gattii VGII (n = 37), to amphotericin B (AMB), 5-flucytosine, fluconazole, voriconazole, and itraconazole was evaluated using the Etest and Vitek 2 systems and the standardized broth microdilution (CLSI-BMD) methodology. According to the CLSI-BMD, the most active in vitro azole was voriconazole (C. neoformans VNI modal MIC of 0.06 μg/ml and C. gattii VGII modal MIC of 0.25 μg/ml), and fluconazole was the least active (modal MIC of 4 μg/ml for both fungi). Modal MICs for amphotericin B were 1 μg/ml for both fungi. In general, good essential agreement (EA) values were observed between the methods. However, AMB presented the lowest EA between CLSI-BMD and Etest for C. neoformans VNI and C. gattii VGII (1.6% and 2.56%, respectively, P < .05 for both). Considering the proposed Cryptococcus spp. epidemiological cutoff values, more than 97% of the studied isolates were categorized as wild-type for the azoles. However, the high frequency of C. neoformans VNI isolates in the population described here that displayed non-wild-type susceptibility to AMB is noteworthy. Epidemiological surveillance of the antifungal resistance of cryptococcal strains is relevant due to the potential burden and the high lethality of cryptococcal meningitis in the Amazon region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.