Key microstructural changes that occur when Duplex Stainless Steels (DSS) are welded could be evaluated when bead-on-plate welding was carried out on a 2205 DSS by the GMAW process. By using numerical simulations, it was possible to calculate locally the heating and cooling rates taking place during the 2205 DSS welding and discuss its correlation to the microstructural changes experimented by the parent metal. Results showed that increasing heat input has promoted the ferritic grain growth with a slight reduction in the austenite content present at the high temperature heat affected zone (HTHAZ), whereas the cooling rates remained above from those reported as critical for sigma phase precipitation in 2205 DSS. Furthermore, nitrogen has proved to be an effective austenite former at the fusion zone (FZ), which can contributes to get a balanced microstructure in DSS welds in contrast to the effects from the elevated cooling rates.
Duplex Stainless Steels (DSS) and Superduplex Stainless Steels (SDSS) have a strong appeal in the petrochemical industry. These steels have excellent properties, such as corrosion resistance and good toughness besides good weldability. Welding techniques take into account the loss of alloying elements during the process, so this loss is usually compensated by the addition of a filler metal rich in alloying elements. A possible problem would be during the welding of these materials in adverse conditions in service, where the operator could have difficulties in welding with the filler metal. Therefore, in this work, two DSS and one SDSS were welded, by autogenous Tungsten Inert Gas (TIG), i.e., without addition of a filler metal, by three different heat inputs. After welding, microstructural, mechanical, and electrochemical analysis was performed. The microstructures were characterized for each welding condition, with the aid of optical microscopy (OM). Vickers hardness, Charpy-V, and cyclic polarization tests were also performed. After the electrochemical tests, the samples were analyzed by scanning electron microscopy (SEM). The SDSS welded with high heat input kept the balance of the austenite and ferrite, and toughness above the limit value. The hardness values remain constant in the weld regions and SDSS is the most resistant to corrosion.
A phenomenological model to predict the multiphase diffusional decomposition of the austenite in low-alloy hypoeutectoid steels was adapted for welding conditions. The kinetics of phase transformations coupled with the heat transfer phenomena was numerically implemented using the Finite Volume Method (FVM) in a computational code. The model was applied to simulate the welding of a commercial type of low-alloy hypoeutectoid steel, making it possible to track the phase formations and to predict the volume fractions of ferrite, pearlite and bainite at the heat-affected zone (HAZ). The volume fraction of martensite was calculated using a novel kinetic model based on the optimization of the well-known Koistinen-Marburger model. Results were confronted with the predictions provided by the continuous cooling transformation (CCT) diagram for the investigated steel, allowing the use of the proposed methodology for the microstructure and hardness predictions at the HAZ of low-alloy hypoeutectoid steels.
Microstructure plays an essential role in the attractive properties of the duplex stainless steels (DSSs) such as toughness and corrosion resistance. These properties are obtained by an adequate balance between the fractions of the ferrite and austenite phases, which can be modified when DSSs are welded. Besides the unbalanced fractions of ferrite and austenite, the precipitation of deleterious compounds at high temperatures such as sigma phase can also occur during DSS welding. In this work, a model based on transport equations was numerically implemented by the finite volume method in a computational code in order to simulate the 2205 DSS welding. It was able to evaluate qualitatively the sigma phase precipitation and the formation of the ferrite and austenite phases by calculating the cooling rates reached during 2205 DSS welding. The results are discussed in light of the previous work, and good agreement between numerical and experimental results was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.