Computational models widely employed for predicting the dispersion of fuel sprays in combustion engines suffer from well-known drawbacks associated with the utilization of case-dependent empirical phase-change models, describing the conversion of liquid into vapour during fuel injection. The present work couples the compressible Navier-Stokes and energy conservation equations with a thermodynamic closure approximation covering pressures from 0 to 2000bar and temperatures that expand from compressed liquid, vapor-liquid equilibrium to trans/supercritical mixing, and thus, cover the whole range of P-T values that diesel fuel undergoes during its injection into combustion engines. The model assumes mechanical and thermal equilibrium between the liquid, vapour and surrounding air phases and thus, it avoids utilization of case-dependent empirical phase-change models for predicting in-nozzle cavitation and vaporization of fuels. Model development is based on the recent works reported for one mono-component (n-dodecane) and extended here to consider the influence of two multicomponent diesel surrogates. Fuel properties are predicted via the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EoS). The tabulated thermodynamic approach proposed is based on P-T tables, providing very high accuracy across the range of conditions with only a small number of interpolation points. The developed model is validated against experimental data for the liquid and vapour penetration for the Spray A conditions reported in the Engine Combustion Network (ECN) database. Results show good agreement for three non-reacting target conditions. Then, from simulations obtained using the two multi-component fuel surrogates their effect can be quantified on spray development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.