This paper shows that it is possible to construct well-defined 2D structures at the air-water interface in which the lateral organization is controlled by means of the preparation of mixed films, and selecting the components so that there are attractive interactions between them. The goal here is to establish the lateral connection between components through self-aggregation of the dye. This can be achieved by selecting a suitable balance between the sizes of the hydrophobic and polar groups. In such a way, the domain structure depends on the ability of the tilt dye to fill the available area. Thus, the molecular organization and the domain morphology of mixed films containing dimyristoyl-phosphatidic acid (DMPA) and the hemicyanine dye, 4-[4-(dimethylamino)styryl]-1-docosylpyridinium bromide (SP), have been studied by using Grazing Incidence X-ray Diffraction (GIXD), Brewster angle microscopy (BAM), and reflection spectroscopy at the air-water interface. For this mixed system, the formation of circular domains with bright horizontal regions and dark vertical regions was observed. Furthermore, depending on the temperature, it is observed as branches grow from circular domains, whose brightness depends on the growth direction. Thus, BAM images allow us to observe some branches that, as their growth direction changes, their brightness also changes simultaneously. The GIXD experiment permits us to relate the circular domains with an orthorhombic phase and the branches grown from the circles with an Overbeck phase. In both cases, the formed structures are induced by the hemicyanine aggregation. Circular BAM domain textures have been simulated by using the Fresnel equations for biaxial anisotropic materials.
In Langmuir monolayers, the repulsive dipolar interaction of the molecules within a domain favors a large boundary-to-area ratio, by which the electrostatic repulsion energy is reduced. 1 In this case, the domain morphology does not entirely correspond to the molecular lattice structure. To design well-defined structures, in which the lateral organization is controlled, it is required to compensate the repulsion energy between dipoles. To achieve this compensation, the polar heads of lipids should be connected, either through hydrogen bonding, 2 or through the self-aggregation of dyes. 3,4 Recently, we have used the latter strategy to study mixed films containing dimyristoyl-phosphatidic acid (DMPA) and an amphiphilic hemicyanine dye (SP) in a 1:1 molar ratio. 4 The key to apply this procedure is the adequate balance between the sizes of the hydrophobic and hydrophilic groups. The DMPA plays a triplet role in the SP:DMPA = 1:1 films. First, the DMPA molecule provides two aliphatic chains to the set, so the minimum perpendicular section of the 1:1 mixture would be around 0.6 nm 2 per SP molecule. Second, the anionic DMPA offsets the positive charge of the SP molecule. Finally, the alkyl chains of the DMPA are shorter than those of the SP, so that the DMPA polar group does not avoid the hemicyanine aggregation by the dye molecular tilt. Thus, if a c is the interfacial area occupied by the hydrophobic group when the alkyl chains are fully extended (a c ≈ 0.6 nm 2 in the SP: DMPA = 1:1 system), and a 0 is the minimum interfacial area occupied by the headgroup (a 0 ≈ 0.33 nm 2 for the hemicyanine group), the dyes to be selected should obey a c g a 0 . In this way, the domain structure depends on the ability of the dye to fill the available area excess (a c À a 0 ). 4 BAM images show a well-organized structure (circular domains) of micrometre size, which presents
The formation of well-defined supramolecular structures on the nanoscopic scale is a fundamental step in nanotechnology. The fine control of the layer-by-layer growth of the supramolecular assemblies at interfaces is most desirable. The collapse of a mixed monolayer composed of two surfactants in an equimolar ratio (the organic dye N-10-dodecyl acridine (DAO) and stearic acid (SA)) is analyzed herein. The collapse process of the DAO/SA mixed monolayer has been monitored using surface pressure-molecular area (π-A) and surface potential isotherms, UV-visible reflection spectroscopy, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), Brewster angle microscopy (BAM), and synchrotron-based in situ X-ray reflectivity (XRR) measurements. The collapse of the DAO/SA mixed monolayer leads to an ordered trilayer. The growth of anisotropic 2D domains of micrometric size is observed during the formation of the trilayer, related to the ordering of the acridine polar headgroups. The trilayer is organized with the first and third monolayers displaying the polar headgroups pointing to the aqueous subphase, whereas the intermediate layer displays the polar headgroups pointing to the air. The trilayer is stabilized by the strong self-aggregation acridine dye group of the DAO molecule. The controlled transition from a monolayer to a trilayer described herein is proposed as a model for further interfacial supramolecular structures of tunable thickness comprising organic dyes.
Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.