Locally severe outbreaks of Fusarium wilt of cotton (Gossypium spp.) in South Georgia raised concerns about the genotypes of the causal pathogen, Fusarium oxysporum f. sp. vasinfectum. Vegetative complementation tests and DNA sequence analysis were used to determine genetic diversity among 492 F. oxysporum f. sp. vasinfectum isolates obtained from 107 wilted plants collected from seven fields in five counties. Eight vegetative complementation groups (VCG) were found, with VCG 01117B and VCG 01121 occurring in 66% of the infected plants. The newly recognized VCG 01121 was the major VCG in Berrien County, the center of the outbreaks. All eight VCG resulted in significant increases in the percentages of wilted leaves (27 to 53%) and significant reductions in leaf weight (40 to 67%) and shoot weight (33 to 60%) after being stem punctured into Gossypium hirsutum ‘Rowden’. They caused little or no significant reductions in shoot weight and height or increases in foliar symptoms and vascular browning in a soil-infestation assay. Soil infestation with Meloidogyne incognita race 3 (root-knot nematode) alone also failed to cause significant disease. When coinoculated with M. incognita race 3, all VCG caused moderate to severe wilt. Therefore, the VCG identified in this study belong to the vascular-competent pathotype, and should pose similar threats to cotton cultivars in the presence of the root-knot nematode. Use of nematode-resistant cultivars, therefore, is probably the best approach to control the disease in Georgia.
A highly virulent race 4 (Cal race 4) of Fusarium oxysporum f. sp. vasinfectum was identified in California cotton fields in 2001, and has since been found in increasing numbers of fields. Cal race 4 isolates contain a unique Tfo1 transposon insertion in the PHO gene that was not found in other F. oxysporum f. sp. vasinfectum genotypes. Based on this insertion, a multiplex polymerase chain reaction method was developed to detect the Cal race 4 pathogen. A panel of F. oxysporum f. sp. vasinfectum isolates representing different vegetative compatibility groups (VCG) and DNA sequence types was assembled to test the specificity of the detection method. In all, 16 of 17 Cal race 4 isolates produced a 583-bp amplicon; the other isolate produced a 396-bp amplicon reflecting the absence of the Tfo1 insertion. This isolate was a moderately virulent pathogen among Cal race 4 isolates. In total, 80 other F. oxysporum isolates associated with cotton and 11 other formae speciales of F. oxysporum produced only the 396-bp amplicon. The method also distinguished Cal race 4 isolates from India race 4 isolates and China race 7 isolates, which did not possess the unique Tfo1 insertion but otherwise had identical DNA sequences, and all belong to VCG0114. The method is capable of detecting the pathogen directly from infected stem tissues even before external symptom appears and, thus, provides an effective tool for timely identification of infested fields and seed lots, and should help reduce dissemination of Cal race 4 in the U.S. Cotton Belt.
MADS-box transcription factors (TFs) regulate functionally diverse gene targets in eukaryotes. In select ascomycetes, MADS-box TFs have been shown to play a role in virulence, and vegetative and sexual development. Here, we characterized Fusarium verticillioides MADS-box TFs, Mads1 and Mads2, in terms of their roles in secondary metabolism and sexual mating. Sequence analyses showed that MADS1 and MADS2 encode TFs with a SRF-type dimerization domain and a MEF2-type dimerization domain, respectively. The MADS1 and MADS2 knockout mutants (Fmt1 and Fmt2 strains, respectively) exhibited decreased vegetative growth and FB1 production when compared to the wild-type. Fmt1 showed reduced expression of 14 polyketide synthase (PKS) genes present in the organism, whereas Fmt2 did not display a change in PKS gene expression. Significantly, the deletion of MADS1 and MADS2 in the MAT1-2 genotype (Fmt4 and Fmt5 strains, respectively) led to strains that failed to produce perithecia and ascospores when crossed with the MAT1-1 wild-type strain. Notably, deletion of either gene did not have an effect on the ability of the fungus to colonize maize stalk or kernels. FB1 production and PKS expression data suggest that Mads1 is a broad regulator of secondary metabolism in F. verticillioides, and may target regulons upstream of Mads2 to influence FB1 production. In addition, MADS-box TFs in F. verticillioides play a critical role in the perithecia development.
Maize is the dominant cereal crop produced in the US. One of the main fungal pathogens of maize is Fusarium verticillioides, the causative agent of ear and stalk rots. Significantly, the fungus produces a group of mycotoxins - fumonisins - on infested kernels, which have been linked to various illnesses in humans and animals. Nonetheless, durable resistance against F. verticillioides in maize is not currently available. In Texas, over 2.1 million acres of maize are vulnerable to fumonisin contamination, but understanding of the distribution of toxigenic F. verticillioides in maize-producing areas is currently lacking. Our goal was to investigate the genetic variability of F. verticillioides in Texas with an emphasis on fumonisin trait and geographical distribution. A total of 164 F. verticillioides cultures were isolated from 65 maize-producing counties. DNA from each isolate was extracted and analyzed by PCR for the presence of FUM1- a key fumonisin biosynthesis gene - and mating type genes. Results showed that all isolates are in fact F. verticillioides capable of producing fumonisins with a 1:1 mating-type gene ratio in the population. To further study the genetic diversity of the population, isolates were analyzed using RAPD fingerprinting. Polymorphic markers were identified and the analysis showed no clear correlation between the RAPD profile of the isolates and their corresponding geographical origin. Our data suggest the toxigenic F. verticillioides population in Texas is widely distributed wherever maize is grown. We also hypothesize that the population is fluid, with active movement and genetic recombination occurring in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.