The Centro de Laseres Pulsados in Salamanca Spain has recently started operation phase and the first User access period on the 6 J 30 fs 200 TW system (VEGA 2) already started at the beginning of 2018. In this paper we report on two commissioning experiments recently performed on the VEGA 2 system in preparation for the user campaign. VEGA 2 system has been tested in different configurations depending on the focusing optics and targets used. One configuration (long focal length f=130 cm) is for under-dense laser-matter interaction where VEGA 2 is focused onto a low density gas-jet generating electron beams (via laser wake field acceleration mechanism) with maximum energy up to 500 MeV and an X-ray betatron source with a 10 keV critical energy. A second configuration (short focal length f=40 cm) is for over-dense laser-matter interaction where VEGA 2 is focused onto an 5 µm thick Al target generating a proton beam with a maximum energy of 10 MeV and average energy of 7-8 MeV and temperature of 2.5 MeV. In this paper we present preliminary experimental results.
In this work, we present a novel and practical method for generating optical vortices in highpower laser systems. Off-axis spiral phase mirrors are used at oblique angles of incidence in the beam path after amplification and compression allowing for the generation of high-power optical vortices in almost any laser system. An off-axis configuration is possible via modification of the azimuthal gradient of the spiral phase helix and is demonstrated with a simple model using a discrete spiral staircase. This work presents the design, fabrication, and implementation of off-axis spiral phase mirrors in both low and high-power laser systems.
We present a scintillator based detector able to measure both spatial and energy information at High repetition rate (HRR) with a relatively simple design. It has been built at the Center of Pulsed Laser (CLPU) in Salamanca and tested in the proton accelerator at the Centro de Micro-Análisis de Materiales (CMAM) in Madrid. The detector has been demonstrated to work in HRR mode by reproducing the performance of the radiochromic film detector. It represents a new class of on-line detectors for Laser-plasma physics experiments in the new emerging High Power and HRR laser systems.
About 50 years ago, Sarachick and Schappert [Phys. Rev. D. 1, 2738-2752(1970] showed that relativistic Thomson scattering leads to wavelength shifts that are proportional to the laser intensity. About 28 years later Chen et al. [Nature 396, 653-655 (1998)] used these shifts to estimate their laser intensity near 10 18 W/cm 2 . More recently there have been several theoretical studies aimed at exploiting nonlinear Thomson scattering as a tool for direct measurement of intensities well into the relativistic regime. We present the first quantitative study of this approach for intensities between 10 18 and 10 19 W/cm 2 . We show that the spectral shifts are in reasonable agreement with estimates of the peak intensity extracted from images of the focal area obtained at reduced power. Finally, we discuss the viability of the approach, its range of usefulness and how it might be extended to gauge intensities well in excess of 10 19 W/cm 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.