Conventional design standards for urban drainage systems are not set to deal with extreme rainfall events. As these events are becoming more frequent, there is room for proposing new planning approaches and standards that are flexible enough to cope with a wide range of rainfall events. In this paper, a semi risk-based approach is presented as a simple and practical way for the analysis and management of rainfall flooding at the precinct scale. This approach uses various rainfall events as input parameters for the analysis of the flood hazard and impacts, and categorises the flood risk in different levels, ranging from very low to very high risk. When visualised on a map, the insight into the risk levels across the precinct will enable engineers and spatial planners to identify and prioritise interventions to manage the flood risk. The approach is demonstrated for a sewer district in the city of Rotterdam, the Netherlands, using a one-dimensional (1D)/two-dimensional (2D) flood model. The risk level of this area is classified as being predominantly very low or low, with a couple of locations with high and very high risk. For these locations interventions, such as disconnection and lowering street profiles, have been proposed and analysed with the 1D/2D flood model. The interventions were shown to be effective in reducing the risk levels from very high/high risk to medium/low risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.