BackgroundGenetic counselling and testing for Lynch syndrome (LS) have recently been introduced in several Latin America countries. We aimed to characterize the clinical, molecular and mismatch repair (MMR) variants spectrum of patients with suspected LS in Latin America. MethodsEleven LS hereditary cancer registries and 34 published LS databases were used to identify unrelated families that fulfilled the Amsterdam II (AMSII) criteria and/or the Bethesda guidelines or suggestive of a dominant colorectal (CRC) inheritance syndrome.ResultsWe performed a thorough investigation of 15 countries and identified 6 countries where germline genetic testing for LS is available and 3 countries where tumor testing is used in the LS diagnosis. The spectrum of pathogenic MMR variants included MLH1 up to 54%, MSH2 up to 43%, MSH6 up to 10%, PMS2 up to 3% and EPCAM up to 0.8%. The Latin America MMR spectrum is broad with a total of 220 different variants which 80% were private and 20% were recurrent. Frequent regions included exons 11 of MLH1 (15%), exon 3 and 7 of MSH2 (17 and 15%, respectively), exon 4 of MSH6 (65%), exons 11 and 13 of PMS2 (31% and 23%, respectively). Sixteen international founder variants in MLH1, MSH2 and MSH6 were identified and 41 (19%) variants have not previously been reported, thus representing novel genetic variants in the MMR genes. The AMSII criteria was the most used clinical criteria to identify pathogenic MMR carriers although microsatellite instability, immunohistochemistry and family history are still the primary methods in several countries where no genetic testing for LS is available yet.ConclusionThe Latin America LS pathogenic MMR variants spectrum included new variants, frequently altered genetic regions and potential founder effects, emphasizing the relevance implementing Lynch syndrome genetic testing and counseling in all of Latin America countries.
Lynch syndrome (LS) is an autosomal dominant syndrome that predisposes individuals to development of cancers early in life. These cancers are mainly the following: colorectal, endometrial, ovarian, small intestine, stomach and urinary tract cancers. LS is caused by germline mutations in DNA mismatch repair genes (MMR), mostly MLH1 and MSH2, which are responsible for more than 85% of known germline mutations. To search for germline mutations in MLH1 and MSH2 genes in 123 unrelated South American suspected LS patients (Bethesda or Amsterdam Criteria) DNA was obtained from peripheral blood, and PCR was performed followed by direct sequencing in both directions of all exons and intron-exon junctions regions of the MLH1 and MSH2 genes. MLH1 or MSH2 pathogenic mutations were found in 28.45% (34/123) of the individuals, where 25/57 (43.85%) fulfilled Amsterdam I, II and 9/66 (13.63%) the Bethesda criteria. The mutations found in both genes were as follows: nonsense (35.3%), frameshift (26.47%), splicing (23.52%), and missense (9%). Thirteen alterations (35.14%) were described for the first time. The data reported in this study add new information about MLH1 and MSH2 gene mutations and contribute to better characterize LS in Brazil, Uruguay and Argentina. The high rate of novel mutations demonstrates the importance of defining MLH1 and MSH2 mutations in distinct LS populations.
BackgroundGenetic counselling and testing for Lynch syndrome have recently been introduced in several South American countries, though yet not available in the public health care system.MethodsWe compiled data from publications and hereditary cancer registries to characterize the Lynch syndrome mutation spectrum in South America. In total, data from 267 families that fulfilled the Amsterdam criteria and/or the Bethesda guidelines from Argentina, Brazil, Chile, Colombia and Uruguay were included.ResultsDisease-predisposing mutations were identified in 37% of the families and affected MLH1 in 60% and MSH2 in 40%. Half of the mutations have not previously been reported and potential founder effects were identified in Brazil and in Colombia.ConclusionThe South American Lynch syndrome mutation spectrum includes multiple new mutations, identifies potential founder effects and is useful for future development of genetic testing in this continent.
Few studies have investigated the frequency of hereditary non-polyposis colorectal cancer (HNPCC) in patients with colorectal cancer (CRC), and these have shown marked geographic variations. The aim of this study was to estimate the frequency of HNPCC in a cohort of Uruguayan CRC patients. We included all patients operated consecutively for CRC in the Hospital Central de las Fuerzas Armadas (Uruguay) between 1987 and 2003. Cases were classified into three groups: (i) those fulfilling Amsterdam criteria; (ii) those not fulfilling Amsterdam criteria but considered as a population at increased risk of cancer; and (iii) sporadic CRC. Genetic analysis to detect point mutations in hMLH/hMSH2/hMSH6 genes was performed in group 1 patients. Cases not showing mutations were tested by multiplex ligation-dependent probe amplification. Among 461 patients, group 1 represented 2.6%, group 2 represented 5.6%, and sporadic cases 91.8%. hMLH1/hMSH2/hMSH6 mutations were found in 25% of cases classified as HNPCC (two in hMLH1 and one in hMSH2). No mutations were detected in hMSH6 gene. The proportion of CRC patients that fulfilled Amsterdam criteria agrees with other reports. However, the percentage of HNPCC cases with identified mutations (25%) may be lower than that reported from other populations. This may reflect, among other possible causes, a different genetic profile in the Uruguayan population.
Inactivating mutations in the MLH1 gene cause the cancer predisposition Lynch syndrome, but for small coding genetic variants it is mostly unclear if they are inactivating or not. Nine such MLH1 variants have been identified in South American colorectal cancer (CRC) patients (p.Tyr97Asp, p.His112Gln, p.Pro141Ala, p.Arg265Pro, p.Asn338Ser, p.Ile501del, p.Arg575Lys, p.Lys618del, p.Leu676Pro), and evidence of pathogenicity or neutrality was not available for the majority of these variants. We therefore performed biochemical laboratory testing of the variant proteins and compared the results to protein in silico predictions on structure and conservation. Additionally, we collected all available clinical information of the families to come to a conclusion concerning their pathogenic potential and facilitate clinical diagnosis in the affected families. We provide evidence that four of the alterations are causative for Lynch syndrome, four are likely neutral and one shows compromised activity which can currently not be classified with respect to its pathogenic potential. The work demonstrates that biochemical testing, corroborated by congruent evolutionary and structural information, can serve to reliably classify uncertain variants when other data are insufficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.