Bovine coronavirus (BCoV) is a recognized cause of severe neonatal calf diarrhea, with a negative impact on animal welfare, leading to economic losses to the livestock industry. Cattle production is one of the most important economic sectors in Uruguay. The aim of this study was to determine the frequency of BCoV infections and their genetic diversity in Uruguayan calves and to describe the evolutionary history of the virus in South America. The overall detection rate of BCoV in Uruguay was 7.8% (64/824): 7.7% (60/782) in dairy cattle and 9.5% (4/42) in beef cattle. The detection rate of BCoV in samples from deceased and live calves was 10.0% (6/60) and 7.6% (58/763), respectively. Interestingly, there was a lower frequency of BCoV detection in calves born to vaccinated dams (3.3%, 8/240) than in calves born to unvaccinated dams (12.2%, 32/263) (OR: 4.02, 95%CI: 1.81-8.90; p = 0.00026). The frequency of BCoV detection was higher in colder months (11.8%, 44/373) than in warmer months (1.5%, 3/206) (OR: 9.05, 95%CI: 2.77-29.53, p = 0.000013). Uruguayan strains grouped together in two different lineages: one with Argentinean strains and the other with Brazilian strains. Both BCoV lineages were estimated to have entered Uruguay in 2013: one of them from Brazil (95%HPD interval: 2011 and the other from Argentina (95%HPD interval: 2010-2014). The lineages differed by four amino acid changes, and both were divergent from the Mebus reference strain. Surveillance should be maintained to detect possible emerging strains that can clearly diverge at the antigenic level from vaccine strains.
Neonatal calf diarrhea (NCD) and mortality cause significant losses to the dairy industry. The preweaning dairy calf mortality risk in Uruguay is high (15.2%); however, causes for these losses are largely unknown. This study aimed to assess whether various pathogens were associated with NCD and death in Uruguayan dairy calves and whether these infections, diarrhea, or deaths were associated with the failure of transfer of passive immunity (FTPI). Contemporary diarrheic (n = 264,) and non-diarrheic (n = 271) 1-to 30-day-old calves from 27 farms were sampled. Feces were analyzed by antigen-capture ELISA for Cryptosporidium spp., rotavirus, bovine coronavirus, and Escherichia coli F5+, RT-PCR for bovine astrovirus (BoAstV), and bacterial cultures for Salmonella enterica. Blood/serum was analyzed by RT-PCR or antigen-capture ELISA for bovine viral diarrhea virus (BVDV). Serum of ≤ 8-day-old calves (n = 95) was assessed by refractometry to determine the concention of serum total proteins (STP) as an indicator of FTPI. Whether the sampled calves died before weaning was recorded. At least one pathogen was detected in 65.4% of the calves, and this percentage was significantly higher in diarrheic (83.7%) versus non-diarrheic (47.6%) calves. Unlike the other pathogens, Cryptosporidium spp. and rotavirus were associated with NCD. Diarrheic calves, calves infected with any of the pathogens, and calves infected with rotavirus had significantly lower concentrations of STP. Diarrheic calves had higher chances of dying before weaning than non-diarrheic calves. Diarrheic calves infected with S. enterica were at increased risk of mortality. Controlling NCD, salmonellosis, cryptosporidiosis, and rotavirus infections, and improving colostrum management practices would help to reduce calf morbi-mortality in dairy farms in Uruguay.
Salmonella enterica is an important animal and human pathogen that can cause enteritis and septicaemia in calves. Generally, antibiotics are prescribed for the treatment of salmonellosis in dairy calves. Here, we report the isolation of antibiotic resistant S. enterica serotypes from calves, including multidrug-resistant isolates. A total of 544 faecal samples from live healthy and diarrheic dairy calves from 29 commercial dairy farms and organ samples from 19 deceased calves that succumbed to salmonellosis in 12 commercial dairy farms in Uruguay were processed for selective S. enterica culture. In total, 41 isolates were serotyped, and susceptibility to 14 antibiotics, from 9 classes of compounds, was evaluated by disk-diffusion test. The minimum inhibitory concentration (MIC) was determined by microdilution. Salmonella Typhimurium was the most frequent serotype, followed by S. Dublin and S. Anatum. Whether determined by diffusion assay or microdilution, resistance to tetracycline, streptomycin and ampicillin were the most frequently pattern found. Based on MIC, 5 isolates were resistant to at least one antibiotic, 21 were resistant to 2 antibiotics, and 14 were multidrug-resistant (resistant to at least one antibiotic in 3 different categories of antibiotics). Eleven different resistance patterns were found. Multidrug resistance in S. enterica is a concern for animal and public health not only because of its zoonotic potential but also due to the possibility of transfer resistance determinants to other bacterial genera. This represents the first report of the antibiotic resistance in S. enterica in dairy farms in Uruguay. Keywords Salmonella Typhimurium. Salmonella Dublin. Salmonella Anatum. Antibiotic resistance. Dairy calves Salmonella enterica is an important pathogen that affects a wide range of animal species and humans. More than 2500 serotypes are documented within Salmonella spp. but only a few affect cattle [1]. In this species, Salmonella Dublin and Salmonella Typhimurium are by far the most frequent serotypes [2, 3], and can cause enteritis, diarrhoea and septicaemia [4, 5]. Salmonellosis in calves is often treated with antibiotics and ß-lactams, and sulphonamides are recommended in cases of septicaemia [6, 7]. When resistance to these antibiotics is suspected or confirmed, quinolones are the next therapeutic option, but emergence of resistance to this group of antibiotics has also been reported [8]. Moreover, antibiotics have been used as feed additives for decades [9, 10], which has promoted the occurrence and selection of resistant and multidrug-resistant (MDR) strains, affecting the therapeutic performance of antibiotics in both animals and humans [9]. The World Health Organization (WHO) recommendations point toward the preservation of antibiotics for human use, reducing their use in animals, and the promotion of sanitation and hygienic practices to avoid disease and, therefore, the use of antibiotics [10]. Multidrug resistance is an emerging issue worldwide, and the transference of resistance me...
White muscle disease (WMD), nutritional myodegeneration or enzootic muscular dystrophy, is a nutritional condition associated with selenium and/or vitamin E deficiency in ruminants. These elements are constituents of the major body antioxidant systems. Depletion of selenium results in oxidative damage to cardiac and skeletal muscle cells, resulting in myodegeneration and myonecrosis, typical lesions of WMD. Selenium deficiency is common in South America, but WMD is underreported. This research describes clinical, biochemical and pathological findings in two episodes of WMD associated with selenium deficiency in beef and dairy calves in Argentina and Uruguay with concurrent copper deficiency in one of them, which resulted in spontaneous calf mortality. Further studies are necessary to estimate the true incidence and economic impact of clinical and subclinical mineral deficiencies in livestock production systems in the southern cone of South America.
Uruguay is one of the main exporters of beef and dairy products, and cattle production is one of the main economic sectors in this country. Rotavirus A (RVA) is the main pathogen associated with neonatal calf diarrhea (NCD), a syndrome that leads to significant economic losses to the livestock industry. The aims of this study are to determine the frequency of RVA infections, and to analyze the genetic diversity of RVA strains in calves in Uruguay. A total of 833 samples from dairy and beef calves were analyzed through RT-qPCR and sequencing. RVA was detected in 57.0% of the samples. The frequency of detection was significantly higher in dairy (59.5%) than beef (28.4%) calves (p < 0.001), while it did not differ significantly among calves born in herds that were vaccinated (64.0%) or not vaccinated (66.7%) against NCD. The frequency of RVA detection and the viral load were significantly higher in samples from diarrheic (72.1%, 7.99 log10 genome copies/mL of feces) than non-diarrheic (59.9%, 7.35 log10 genome copies/mL of feces) calves (p < 0.005 and p = 0.007, respectively). The observed G-types (VP7) were G6 (77.6%), G10 (20.7%), and G24 (1.7%), while the P-types were P[5] (28.4%), P[11] (70.7%), and P[33] (0.9%). The G-type and P-type combinations were G6P[11] (40.4%), G6P[5] (38.6%), G10P[11] (19.3%), and the uncommon genotype G24P[33] (1.8%). VP6 and NSP1-5 genotyping were performed to better characterize some strains. The phylogenetic analyses suggested interspecies transmission, including transmission between animals and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.