Using multiband k·p calculations, we show that strain-engineered piezoelectricity is a powerful tool to modulate the electron-hole spatial separation in a wide class of wurtzite CdSe/CdS nanocrystals. The inherent anisotropy of the hexagonal crystal structure leads to anisotropic strain and, consequently, to a pronounced piezoelectric field along the c axis, which can be amplified or quenched through a proper design of the core-shell structure. The use of large cores and thick shells promotes a gradual departure from quantum confined nanocrystals to a regime dominated by piezoelectric confinement. This allows excitons to evolve from the usual type-I and quasi-type-II behavior to a type-II behavior in dot-in-dots, dot-in-rods, rod-in-rods, and dot-in-plates. Piezoelectric fields explain experimental observations for giant-shell nanocrystals, whose time-resolved photoluminescence reveals long exciton lifetimes for large cores, contrary to the expectations of standard quantum confinement models. They also explain the large differences in exciton lifetimes reported for different classes of CdSe/CdS nanocrystals.
The electronic structure of monolayer MoS2 nanoribbons and quantum dots have been investigated by means of an effective k · p two-band model. Both systems with borders exhibit states spatially localized on the edges and with energies lying in the band gap. We show that the conduction and valence band curvatures determine the presence/absence of these states whose origin has been related to the marginal topological properties of the MoS2 single-valley Hamiltonian.
We study the effect of valence band spin-orbit interactions (SOI) on the acoustic phonon-assisted spin relaxation of holes confined in quantum dots (QDs). Heavy hole-light hole (hh-lh) mixing and all the spin-orbit terms arising from zinc-blende bulk inversion asymmetry (BIA) are considered on equal footing in a fully three-dimensional Hamiltonian. We show that hh-lh mixing and BIA have comparable contributions to the hole spin relaxation in self-assembled QDs, but BIA becomes dominant in gated QDs. Simultaneously accounting for both mechanisms is necessary for quantitatively correct results in quasi-two-dimensional QDs. The dependence of the hole spin relaxation on the QD geometry and spin splitting energy is drastically different from that of electrons, with a non-monotonic behavior which results from the interplay between SOI terms. Our results reconcile contradictory predictions of previous theoretical works and are consistent with experiments. For a qualitative understanding of the geometry dependence of 1/T h 1 , we rewrite the hole states, equation (14), as | h m = J z c m J z |φ m J z |3/2, J z , where |φ m J z = r c m J z ,r |r is the envelope function associated with the periodic Bloch function |3/2, J z . If we restrict to the diagonal components of H h-ph , the matrix element determining the relaxation rate becomes
We use spin-density-functional theory within an envelope function approach to calculate electronic states in a GaAs/InAs core-shell nanowire pierced by an axial magnetic field. Our fully three-dimensional quantum modeling includes explicitly a description of the realistic cross section and composition of the sample, and the electrostatic field induced by external gates in two different device geometries: gate-all-around and back-gate. At low magnetic fields, we investigate Aharonov-Bohm oscillations and signatures therein of the discrete symmetry of the electronic system, and we critically analyze recent magnetoconductance observations. At high magnetic fields, we find that several charge and spin transitions occur. We discuss the origin of these transitions in terms of different localization and Coulomb regimes, and we predict their signatures in magnetoconductance experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.