SUMMARY
Pluripotent stem cells (PSCs) could provide a powerful system to model development of the human esophagus, whose distinct tissue organization compared to rodent esophagus suggests that developmental mechanisms may not be conserved between species. We therefore established an efficient protocol for generating esophageal epithelial progenitors (EPCs) from human PSCs. We found that inhibition of TGFß and BMP signaling is required for sequential specification of EPCs, which can be further purified using cell surface markers. These EPCs resemble their human fetal counterparts and can recapitulate normal development of esophageal stratified squamous epithelium during in vitro 3D cultures and in vivo. Importantly, combining hPSC differentiation strategies with mouse genetics elucidated a critical role for Notch signaling in the formation of this epithelium. These studies therefore not only provide an efficient approach to generate EPCs, but also offer a model system to study the regulatory mechanisms underlying development of the human esophagus.
Gene expression regulation during embryo development is under strict regulation to ensure proper gene expression in both time and space. The involvement of microRNAs (miRNA) in early vertebrate development is documented and inactivation of different proteins involved in miRNA synthesis results in severe malformations or even arrests vertebrate embryo development. However, there is very limited information on when and in what tissues the genes encoding these proteins are expressed. Herein, we report a detailed characterization of the expression patterns of DROSHA, DGCR8, XPO5 and DICER1 in the developing chick embryo, from HH1 (when the egg is laid) to HH25 (5-days incubation), using whole mount in situ hybridization and cross-section analysis. We found that these genes are co-expressed in multiple tissues, mostly after stage HH4. Before early gastrulation DICER1 expression was never detected, suggesting the operation of a Dicer-independent pathway for miRNA synthesis. Our results support an important role for miRNAs in vertebrate embryo development and provide the necessary framework to unveil additional roles for these RNA processing proteins in development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.