Phlebotomine vector ecology was studied in the largest recorded outbreak of American cutaneous leishmaniasis in Colombia in 2004. In two rural townships that had experienced contrasting patterns of case incidence, this study evaluated phlebotomine species composition, seasonal abundance, nocturnal activity, blood source, prevalence of Leishmania infection, and species identification. CDC miniature light traps were used to trap the phlebotomines. Traps were set indoors, peridomestically, and in woodlands. Natural infection was determined in pools by polymerase chain reaction–Southern blot, and blood sources and species identification were determined by sequencing. Large differences were observed in population abundance between the two townships evaluated. Lutzomyia longiflocosa was the most abundant species (83.1%). Abundance was higher during months with lower precipitation. Nocturnal activity was associated with human domestic activity. Blood sources identified were mainly human (85%). A high prevalence of infection was found in L. longiflocosa indoors (2.7%) and the peridomestic setting (2.5%). L. longiflocosa was responsible for domestic transmission in Chaparral.
Analysis of plant-frugivore interactions provides a quantitative framework for integrating community structure and ecosystem function in terms of how the roles and attributes of individual species contribute to network structure and resilience. In this study, we used centrality metrics to rank and detect the most important species in a mutualistic network of fruit-eating birds and plants in a cloud forest in the Colombian Andes. We identified a central core of ten bird and seven plant species in a network of 135 species that perform dual roles as local hubs and connectors. The birds were mostly large forest frugivores, such as cracids, cotingas, and toucans, which consume fruits of all sizes. The plants were species of intermediate successional stages with small- to medium-sized seeds that persist in mature forest or forest borders (e.g., Miconia, Cecropia, Ficus). We found the resilience of our network depends on super-generalist species, because their elimination makes the network more prone to disassemble than random extinctions, potentially disrupting seed-dispersal processes. At our study site, extirpation of large frugivores has already been documented, and if this continues, the network might collapse despite its high diversity. Our results suggest that generalist species play critical roles in ecosystem function and should be incorporated into conservation and monitoring programs. © 2016 The Association for Tropical Biology and Conservation
Environmental risk factors for cutaneous leishmaniasis were investigated for the largest outbreak recorded in Colombia. The outbreak began in 2003 in Chaparral, and in the following five years produced 2,313 cases in a population of 56,228. Candidate predictor variables were land use, elevation, and climatic variables such as mean temperature and precipitation. Spatial analysis showed that incidence of cutaneous leishmaniasis was higher in townships with mean temperatures in the middle of the county's range. Incidence was independently associated with higher coverage with forest or shrubs (2.6% greater for each additional percent coverage, 95% credible interval [CI] = 0.5–4.9%), and lower population density (22% lower for each additional 100 persons/km2, 95% CI = 7–41%). The extent of forest or shrub coverage did not show major changes over time. These findings confirmed the roles of climate and land use in leishmaniasis transmission. However, environmental variables were not sufficient to explain the spatial variation in incidence.
OBJECTIVE To evaluate the environmental and ecological factors associated with Leishmania transmission and vector abundance in Chaparral, Tolima-Colombia. METHODS First, we compared the ecological characteristics, abundance of phlebotomies and potential reservoir hosts in the peridomestic environment (100 m radius) of randomly selected houses, between two townships with high and low cutaneous leishmaniasis incidence. Second, we examined peridomestic correlates of phlebotomine abundance in all 43 houses in the higher risk township. RESULTS The high transmission township had higher coverage of forest (23% vs. 8.4%) and shade coffee (30.7% vs. 11%), and less coffee monoculture (16.8% vs. 26.2%) and pasture (6.3% vs. 12.3%), compared to the low transmission township. Lutzomyia were more abundant in the high transmission township 2.5 vs. 0.2/trap/night. Lutzomyia longiflocosa was the most common species in both townships: 1021/1450 (70%) and 39/80 (49%). Numbers of potential wild mammal reservoirs were small, although four species were found to be infected with Leishmania (Viannia) spp. In the high transmission township, the overall peridomiciliary capture rate of L. longiflocosa was 1.5/trap/night, and the abundance was higher in houses located nearer to forest (ρ = −0.30, P = 0.05). CONCLUSION The findings are consistent with a domestic transmission cycle with the phlebotomies dependent on dense vegetation near the house.
The objective of this research was to identify environmental risk factors for cutaneous leishmaniasis (CL) in Colombia and map high-risk municipalities. The study area was the Colombian Andean region, comprising 715 rural and urban municipalities. We used 10 years of CL surveillance: 2000-2009. We used spatial-temporal analysis - conditional autoregressive Poisson random effects modelling - in a Bayesian framework to model the dependence of municipality-level incidence on land use, climate, elevation and population density. Bivariable spatial analysis identified rainforests, forests and secondary vegetation, temperature, and annual precipitation as positively associated with CL incidence. By contrast, livestock agroecosystems and temperature seasonality were negatively associated. Multivariable analysis identified land use - rainforests and agro-livestock - and climate - temperature, rainfall and temperature seasonality - as best predictors of CL. We conclude that climate and land use can be used to identify areas at high risk of CL and that this approach is potentially applicable elsewhere in Latin America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.