Nowadays, there are several meta-heuristics algorithms which offer solutions for multi-variate optimization problems. These algorithms use a population of candidate solutions which explore the search space, where the leadership plays a big role in the exploration-exploitation equilibrium. In this work, we propose to use a Germinal Center Optimization algorithm (GCO) which implements temporal leadership through modeling a non-uniform competitive-based distribution for particle selection. GCO is used to find an optimal set of parameters for a neural inverse optimal control applied to all-terrain tracked robot. In the Neural Inverse Optimal Control (NIOC) scheme, a neural identifier, based on Recurrent High Orden Neural Network (RHONN) trained with an extended kalman filter algorithm, is used to obtain a model of the system, then, a control law is design using such model with the inverse optimal control approach. The RHONN identifier is developed without knowledge of the plant model or its parameters, on the other hand, the inverse optimal control is designed for tracking velocity references. Applicability of the proposed scheme is illustrated using simulations results as well as real-time experimental results with an all-terrain tracked robot.
In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.
Hyperspectral images (HI) collect information from across the electromagnetic spectrum, and they are an essential tool for identifying materials, recognizing processes and finding objects. However, the information on an HI could be sensitive and must to be protected. Although there are many encryption schemes for images and raw data, there are not specific schemes for HI. In this paper, we introduce the idea of crossed chaotic systems and we present an ad hoc parallel crossed chaotic encryption algorithm for HI, in which we take advantage of the multidimensionality nature of the HI. Consequently, we obtain a faster encryption algorithm and with a higher entropy result than others state of the art chaotic schemes.
Abstract. On computer vision field Structure from Motion (SfM) algorithms offer good advantages for numerous applications (augmented reality, autonomous navigation, motion capture, remote sensing, object recognition, image-base 3D modeling, among others), nevertheless, these algorithms show some weakness; in the present paper we propose the use of Bio-inspired Aging Model-PSO (BAM-PSO) to improve the accuracy of SfM algorithms. The BAM-PSO algorithm is used over a Geometric Algebra (GA) framework in order to compute the rigid movement on images and this allows us to obtain a numerically stable algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.