We evaluated the effects of the supplementation with L-glutamine and glutamine dipeptide (GDP) on biochemical and morphophysiological parameters in streptozotocin-diabetic rats. For this purpose, thirty animals were distributed into six groups treated orally (gavage) during thirty days: non diabetic rats (Control) + saline, diabetic + saline; Control + L-glutamine (248 mg/kg), Diabetic + L-glutamine (248 mg/kg), Control + GDP (400 mg/kg), Diabetic + GDP (400 mg/kg). Diabetes was induced by an intravenous injection of streptozotocin (60 mg/kg) and confirmed by fasting glucose ≥ 200 mg/dL. Physiological parameters, i.e., body mass, food intake, blood glucose, water intake, urine and faeces were evaluated during supplementation. After the period of supplementation, the animals were euthanized. The blood was collected for biochemical assays (fructosamine, transaminases, lipid profile, total protein, urea, ammonia). Moreover, the jejunum was excised and stored for morphophysiological assays (intestinal enzyme activity, intestinal wall morphology, crypt proliferative index, number of serotoninergic cells from the mucosa, and vipergic neurons from the submucosal tunica). The physiological parameters, protein metabolism and intestinal enzyme activity did not change with the supplementation with L-glutamine or GDP. In diabetic animals, transaminases and fructosamine improved with L-glutamine and GDP supplementations, while the lipid profile improved with L-glutamine. Furthermore, both forms of supplementation promoted changes in jejunal tunicas and wall morphometry of control and diabetic groups, but only L-glutamine promoted maintenance of serotoninergic cells and vipergic neurons populations. On the other hand, control animals showed changes that may indicate negative effects of L-glutamine. Thus, the supplementation with L-glutamine was more efficient for maintaining intestinal morphophysiology and the supplementation with GDP was more efficient to the organism as a whole. Thus, we can conclude that local differences in absorption and metabolism could explain the differences between the supplementation with L-glutamine or GDP.
As the number of overweight and obese people has risen in recent years, there has been a parallel increase in the number of people with metabolic syndrome, diabetes and non-alcoholic fatty liver disease. The consumption of artificially sweetened beverages contributes to these epidemics. This study investigated the long-term effects of ingestion of a 40% sucrose solution on serum and hepatic parameters in male Wistar rats (Rattus norvegicus). After 180 days, the glycemic response, lipid profile and hepatic oxidative stress were compared to those of rats maintained on water. Sucrose ingestion led to higher body weight, increased fat deposits, reduced voluntary food intake and reduced feeding efficiency. Rats that received sucrose solution showed early signs of glucose intolerance and insulin resistance, such as hyperinsulinemia. Serum triacylglycerol (TG), very-low density lipoprotein (VLDL), cholesterol, ALT and AST levels increased after sucrose consumption. Elevated malondialdehyde and superoxide dismutase (SOD) levels and reduced glutathione levels characterize the hepatic oxidative stress due to sucrose ingestion. Liver sample histology showed vacuolar traces and increased fibrotic tissue. Our data showed the harmful effects of chronic consumption of sucrose solution, which can cause alterations that are found frequently in obesity, glucose intolerance and non-alcoholic hepatic disease, characteristics of metabolic syndrome.
There are several animal models of type 2 diabetes mellitus induction but the comparison between models is scarce. Food restriction generates benefits, such as reducing oxidative stress, but there are few studies on its effects on diabetes. The objective of this study is to evaluate the differences in physiological and biochemical parameters between diabetes models and their responses to food restriction. For this, 30 male Wistar rats were distributed in 3 groups (n = 10/group): control (C); diabetes with streptozotocin and cafeteria-style diet (DE); and diabetes with streptozotocin and nicotinamide (DN), all treated for two months (pre-food restriction period). Then, the 3 groups were subdivided into 6, generating the groups CC (control), CCR (control+food restriction), DEC (diabetic+standard diet), DER (diabetic+food restriction), DNC (diabetic+standard diet) and DNR (diabetic+food restriction), treated for an additional two months (food restriction period). The food restriction (FR) used was 50% of the average daily dietary intake of group C. Throughout the treatment, physiological and biochemical parameters were evaluated. At the end of the treatment, serum biochemical parameters, oxidative stress and insulin were evaluated. Both diabetic models produced hyperglycemia, polyphagia, polydipsia, insulin resistance, high fructosamine, hepatic damage and reduced insulin, although only DE presented human diabetes-like alterations, such as dyslipidemia and neuropathy symptoms. Both DEC and DNC diabetic groups presented higher levels of protein carbonyl groups associated to lower antioxidant capacity in the plasma. FR promoted improvement of glycemia in DNR, lipid profile in DER, and insulin resistance and hepatic damage in both diabetes models. FR also reduced the protein carbonyl groups of both DER and DNR diabetic groups, but the antioxidant capacity was improved only in the plasma of DER group. It is concluded that FR is beneficial for diabetes but should be used in conjunction with other therapies.
The study aims to analyse the treatment of whey protein enriched with Stevia rebaudiana fraction in insulin secretion and its role mitigating streptozotocin-induced hyperglycemia in rats. Thus, diabetic animals were treated with whey protein enriched with S. rebaudiana fraction or with only the protein isolate or only the Stevia fraction. Insulin level in plasma was measured by radioimmunoassay and the viability of b cells was detected by immunohistochemistry. The results showed that diabetic animals treated with whey protein enriched with S. rebaudiana fraction had a greater recovery from insulinemia, with plasma levels similar to non-diabetic animals (* 0.13 ng/ mL). In addition, the same group showed a higher number of insulin-positive pancreatic B cells (* 66%) in immunohistochemistry analysis, while the diabetic groups treated with only the fraction of stevia or whey protein showed 38 and 59% of positive cells, respectively. These results show that the treatment may have restored the viability of streptozotocin-injured pancreatic B cells, and consequently increased insulin secretion, suggesting whey protein enriched with S. rebaudiana fraction can be used an adjunct/supplement in diabetic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.