This study is concerned with motion analysis and hydroelastic response of a floating offshore wind turbine to wave loads. The novel floating structure, made of prestressed concrete, is designed to support multiple wind turbines, and it rotates according to the environmental loads to face the incoming wind. The floating structure is attached to a mooring line that allows the rotation of the structure in response to the environmental loads. The floating structure is an equilateral triangular platform. The wind turbines are located at the vertices. Due to the dimensional characteristics of the structure, elasticity of the floating platform plays an important role in its dynamics. While the dynamic response of the structure is driven by both aerodynamic and hydrodynamic loads, this study focuses on the motion and elastic response of the novel floating structure to the hydrodynamic loads only. The three dimensional hydrodynamic loads on the floating structure are obtained by use of the constant panel approach of the Green function method, subject to linear mooring loads. A finite element analysis is carried out for the calculation of the elastic response of the structure. Computations of the integrated linear structure-fluid-structure interaction problem are performed in frequency domain using HYDRAN, a computer program written for the linear dynamic analysis of rigid and flexible bodies. Results presented here include the response amplitude operators of both the rigid and flexible bodies to incoming waves of various frequencies and directions. Also presented are the wave-induced stresses on the floating body, and the elastic deformations.
Most of the existing floating offshore wind turbines (FOWT), whether in concept or built, host a single turbine. Structures that can host multiple turbines have received attention in recent years, mainly with the aim of reducing the overall cost of energy production and maintenance. A concept challenge of placing multiple wind turbines on a single floating platform is that under variable wind directions, the leading turbines may block the wind against the trailing turbines. In this work, concept design of a wind-tracing floating structure accommodating three wind turbines is presented. The triangular-shapefloating platform is made of pre-stressed concrete, and the turbines are located on the corners. The floating structure uses a single-point mooring system which allows for the entire structure to rotate in response to the change of wind direction. Due to the particular configuration of the floating structure, it is essential to consider the wind, wave and current loads, along with the response of the structure, simultaneously. Response of the FOWT to simultaneous environmental loads from different directions is studied by use of the constant panel approach of the Green function method, subject to constant wind loads on the turbines and linear mooring loads. We also consider the elasticity of the structure by use of finite element analysis, coupled with the hydro- and aero-dynamic loads and responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.