Many of the computing systems programmed using Machine Learning are opaque: it is difficult to know why they do what they do or how they work. The Explainable Artificial Intelligence research program aims to develop analytic techniques with which to render opaque computing systems transparent, but lacks a normative framework with which to evaluate these techniques' explanatory success. The aim of the present discussion is to develop such a framework, while paying particular attention to different stakeholders' distinct explanatory requirements. Building on an analysis of 'opacity' from philosophy of science, this framework is modeled after David Marr's influential account of explanation in cognitive science. Thus, the framework distinguishes between the different questions that might be asked about an opaque computing system, and specifies the general way in which these questions should be answered. By applying this normative framework to current techniques such as input heatmapping, featuredetector identification, and diagnostic classification, it will be possible to determine whether and to what extent the Black Box Problem can be solved.
The received view of dynamical explanation is that dynamical cognitive science seeks to provide covering-law explanations of cognitive phenomena. By analyzing three prominent examples of dynamicist research, I show that the received view is misleading: some dynamical explanations are mechanistic explanations and in this way resemble computational and connectionist explanations. Interestingly, these dynamical explanations invoke the mathematical framework of dynamical systems theory to describe mechanisms far more complex and distributed than the ones typically considered by philosophers. Therefore, contemporary dynamicist research reveals the need for a more sophisticated account of mechanistic explanation.
People can be taught to manipulate symbols according to formal mathematical and logical rules. Cognitive scientists have traditionally viewed this capacity—the capacity for symbolic reasoning—as grounded in the ability to internally represent numbers, logical relationships, and mathematical rules in an abstract, amodal fashion. We present an alternative view, portraying symbolic reasoning as a special kind of embodied reasoning in which arithmetic and logical formulae, externally represented as notations, serve as targets for powerful perceptual and sensorimotor systems. Although symbolic reasoning often conforms to abstract mathematical principles, it is typically implemented by perceptual and sensorimotor engagement with concrete environmental structures.
Bayesian reverse-engineering is a research strategy for developing three-level explanations of behavior and cognition. Starting from a computational-level analysis of behavior and cognition as optimal probabilistic inference, Bayesian reverse-engineers apply numerous tweaks and heuristics to formulate testable hypotheses at the algorithmic and implementational levels. In so doing, they exploit recent technological advances in Bayesian artificial intelligence, machine learning, and statistics, but also consider established principles from cognitive psychology and neuroscience. Although these tweaks and heuristics are highly pragmatic in character and are often deployed unsystematically, Bayesian reverse-engineering avoids several important worries that have been raised about the explanatory credentials of Bayesian cognitive science: the worry that the lower levels of analysis are being ignored altogether; the challenge that the mathematical models being developed are unfalsifiable; and the charge that the terms 'optimal' and 'rational' have lost their customary normative force. But while Bayesian reverse-engineering is therefore a viable and productive research strategy, it is also no fool-proof recipe for explanatory success.
Models developed using machine learning are increasingly prevalent in scientific research. At the same time, these models are notoriously opaque. Explainable AI aims to mitigate the impact of opacity by rendering opaque models transparent. More than being just the solution to a problem, however, Explainable AI can also play an invaluable role in scientific exploration. This paper describes how post-hoc analytic techniques from Explainable AI can be used to refine target phenomena in medical science, to identify starting points for future investigations of (potentially) causal relationships, and to generate possible explanations of target phenomena in cognitive science. In this way, this paper describes how Explainable AI—over and above machine learning itself—contributes to the efficiency and scope of data-driven scientific research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.