Abstract. Evolution of landscape heterogeneity is controlled by coupled Earth system dynamics, and the resulting process complexity is a major hurdle to cross towards a unified theory of catchment hydrology. The Biosphere 2 Landscape Evolution Observatory (LEO), a 334.5 m 2 artificial hillslope built with homogeneous soil, may have evolved into heterogeneous soil during the first experiment driven by an intense rainfall event. The experiment produced predominantly seepage face water outflow, but also generated overland flow, causing superficial erosion and the formation of a small channel. In this paper, we explore the hypothesis of incipient heterogeneity development in LEO and its effect on overland flow generation by comparing the modeling results from a three-dimensional physically based hydrological model with measurements of total mass change and seepage face flow. Our null hypothesis is that the soil is hydraulically homogeneous, while the alternative hypothesis is that LEO developed downstream heterogeneity from transport of fine sediments driven by saturated subsurface flow. The heterogeneous case is modeled by assigning saturated hydraulic conductivity at the LEO seepage face (K sat,sf ) different from that of the rest (K sat ). A range of values for K sat , K sat,sf , soil porosity, and pore size distribution is used to account for uncertainties in estimating these parameters, resulting in more than 20 000 simulations. It is found that the best runs under the heterogeneous soil hypothesis produce smaller errors than those under the null hypothesis, and that the heterogeneous runs yield a higher probability of best model performance than the homogeneous runs. These results support the alternative hypothesis of localized incipient heterogeneity of the LEO soil, which facilitated generation of overland flow. This modeling study of the first LEO experiment suggests an important role of coupled water and sediment transport processes in the evolution of subsurface heterogeneity and on overland flow generation, highlighting the need of a coupled modeling system that integrates across disciplinary processes.
A seepage face is a nonlinear dynamic boundary that strongly affects pressure head distributions, water table fluctuations, and flow patterns. Its handling in hydrological models, especially under complex conditions such as heterogeneity and coupled surface/subsurface flow, has not been extensively studied. In this paper, we compare the treatment of the seepage face as a static (Dirichlet) versus dynamic boundary condition, we assess its resolution under conditions of layered heterogeneity, we examine its interaction with a catchment outlet boundary, and we investigate the effects of surface/subsurface exchanges on seepage faces forming at the land surface. The analyses are carried out with an integrated catchment hydrological model. Numerical simulations are performed for a synthetic rectangular sloping aquifer and for an experimental hillslope from the Landscape Evolution Observatory. The results show that the static boundary condition is not always an adequate stand‐in for a dynamic seepage face boundary condition, especially under conditions of high rainfall, steep slope, or heterogeneity; that hillslopes with layered heterogeneity give rise to multiple seepage faces that can be highly dynamic; that seepage face and outlet boundaries can coexist in an integrated hydrological model and both play an important role; and that seepage faces at the land surface are not always controlled by subsurface flow. The paper also presents a generalized algorithm for resolving seepage face outflow that handles heterogeneity in a simple way, is applicable to unstructured grids, and is shown experimentally to be equivalent to the treatment of atmospheric boundary conditions in subsurface flow models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.