The Tasmanian devil, a marsupial carnivore, is endangered because of the emergence of a transmissible cancer known as devil facial tumor disease (DFTD). This fatal cancer is clonally derived and is an allograft transmitted between devils by biting. We performed a large-scale genetic analysis of DFTD with microsatellite genotyping, a mitochondrial genome analysis, and deep sequencing of the DFTD transcriptome and microRNAs. These studies confirm that DFTD is a monophyletic clonally transmissible tumor and suggest that the disease is of Schwann cell origin. On the basis of these results, we have generated a diagnostic marker for DFTD and identify a suite of genes relevant to DFTD pathology and transmission. We provide a genomic data set for the Tasmanian devil that is applicable to cancer diagnosis, disease evolution, and conservation biology. † To whom correspondence should be addressed. DFTD appears to be a clonal cell line, transmitted (by biting) as an allograft between devils (5,6) and may be similar in transmission to canine transmissible venereal tumor (CTVT) and a transmissible sarcoma affecting Syrian hamsters (7-9). The prevalence and biology of such somatic cell parasites is generally unknown (10).Studies of captive Tasmanian devils have suggested that the species is prone to developing tumors, particularly carcinomas (11,12). However, DFTD does not resemble previously described devil cancers (3,13), and determining its etiology is critical for developing management strategies for the disease. Cytologically, DFTD appears as a soft tissue neoplasm consisting of undifferentiated round to spindle-shaped cells with few defining ultrastructural features (3,13). Immunohistochemistry suggests that the tumor is derived from neuroectoderm (13).Clonal transmission of DFTD was proposed on the basis of karyotypic evidence (5) and was supported by genetic analysis of DFTD tumors at microsatellite and major histocompatibility complex loci (6). We genotyped at 14 micro-satellite loci 25 paired tumor and host samples, as well as 10 samples from DFTD-unaffected devils from 16 locations in Tasmania (14) (figs. S1 and S2 and table S1). All DFTD tumors shared a similar genotype across all loci, regardless of location, sex, or age of the animal (P = 0.18, permutation test) (figs. S1 and S2). Furthermore, the tumor genotype was distinct from that of both the hosts and unaffected devils (P < 0.001, permutation test) (figs. S1 and S2). These data were consistent with previous studies (5,6) and support the supposition that DFTD is a single clonal cell line propagated as a tumor allograft.To further assess the clonal origin of DFTD, we sequenced a 1180-base pair fragment of the mitochondrial locus control region (LCR) from 14 tumors, 14 hosts, and 9 DFTD-unaffected devils (table S2). We found that all devils and tumors shared a single LCR haplotype in this region, except for one single-nucleotide polymorphism at position 15,711, which supported the idea that the tumors are clonal. Furthermore, this nucleotide variant was...
An overarching goal of photosynthesis research is to identify how components of the process can be improved to benefit crop productivity, global food security, and renewable energy storage. Improving carbon fixation has mostly focused on enhancing the CO fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This grand challenge has mostly proved ineffective because of catalytic mechanism constraints and required chaperone complementarity that hinder Rubisco biogenesis in alternative hosts. Here we refashion metabolism by expressing a phosphoribulokinase-neomycin phosphotransferase fusion protein to produce a high-fidelity, high-throughput Rubisco-directed evolution (RDE2) screen that negates false-positive selection. Successive evolution rounds using the plant-like-Rubisco from the cyanobacterium BP1 identified two large subunit and six small subunit mutations that improved carboxylation rate, efficiency, and specificity. Structural analysis revealed the amino acids clustered in an unexplored subunit interface of the holoenzyme. To study its effect on plant growth, the-Rubisco was transformed into tobacco by chloroplast transformation. As previously seen for PCC6301 Rubisco, the specialized folding and assembly requirements of-Rubisco hinder its heterologous expression in leaf chloroplasts. Our findings suggest that the ongoing efforts to improve crop photosynthesis by integrating components of a cyanobacteria CO-concentrating mechanism will necessitate co-introduction of the ancillary molecular components required for Rubisco biogenesis.
Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.