Objective (1) Characterize the distribution of M1 and M2 macrophages in vestibular schwannomas by hearing status. (2) Develop assays to assess monocyte migration and macrophage polarization in cocultures with vestibular schwannoma cells. Study Design Basic and translational science. Setting Tertiary care center. Methods A retrospective chart review of 30 patients with vestibular schwannoma (VS) was performed. Patients were stratified into serviceable and unserviceable hearing groups. Immunohistochemistry for CD80+ M1 and CD163+ M2 macrophages was conducted. Primary VS cultures (n = 4) were developed and cocultured with monocytes. Immunohistochemistry for macrophage markers was performed to assess monocyte migration and macrophage polarization. Results Although tumors associated with unserviceable hearing had higher levels of CD80 and CD163 than those with serviceable hearing, the relationship was only significant with CD163 ( P = .0161). However, CD163 level did not remain a significant predictor variable associated with unserviceable hearing on multivariate analysis when adjusted for other variables. In vitro assays show that VS cells induced monocyte migration and polarization toward CD80+ M1 or CD163+ M2 macrophage phenotypes, with qualitative differences in CD163+ macrophage morphologies between serviceable and unserviceable hearing groups. Conclusion Vestibular schwannomas express varying degrees of CD80+ M1 and CD163+ M2 macrophages. We present evidence that higher expression of CD163+ may contribute to poorer hearing outcomes in patients with VS. We also describe in vitro assays in a proof-of-concept investigation that VS cells can initiate monocyte migration and macrophage polarization. Future investigations are warranted to explore the relationships between tumor, macrophages, secreted cytokines, and hearing outcomes in patients with VS.
DYT-TOR1A or DYT1 early-onset generalized dystonia is an inherited movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, or abnormal postures. The majority of the DYT1 dystonia patients have a trinucleotide GAG deletion in DYT1/TOR1A . Trihexyphenidyl (THP), an antagonist for excitatory muscarinic acetylcholine receptor M1, is commonly used to treat dystonia. Dyt1 heterozygous ΔGAG knock-in (KI) mice, which have the corresponding mutation, exhibit impaired motor-skill transfer. Here, the effect of THP injection during the treadmill training period on the motor-skill transfer to the accelerated rotarod performance was examined. THP treatment reversed the motor-skill transfer impairment in Dyt1 KI mice. Immunohistochemistry showed that Dyt1 KI mice had a significant reduction of the dorsolateral striatal cholinergic interneurons. In contrast, Western blot analysis showed no significant alteration in the expression levels of the striatal enzymes and transporters involved in the acetylcholine metabolism. The results suggest a functional alteration of the cholinergic system underlying the impairment of motor-skill transfer and the pathogenesis of DYT1 dystonia. Training with THP in a motor task may improve another motor skill performance in DYT1 dystonia.
Objectives: In this review, we discuss current knowledge about the genetics and epigenetics of vestibular schwannoma (VS) in relation to hearing loss. A multistep and sequential genetic algorithm suitable for the identification of Neurofibromatosis Type 2 (NF2) constitutional and somatic mutations is discussed. Data Sources, Study Selection: A review was performed of the English literature from 1990 to 2019 using PubMed regarding genetics and epigenetics of vestibular schwannoma and NF2. Conclusion: NF2 is a genetic disorder characterized by NF2 mutations that affect the function of a tumor suppressor called merlin. In particular, individuals with NF2 develop bilateral VS that can lead to hearing loss and even deafness. Recent advances in genetic and epigenetic studies have improved our understanding of the genotype–phenotype relationships that affect hearing in NF2 patients. Specific constitutional NF2 mutations including particular truncating, deletion, and missense mutations have been associated with poorer hearing outcomes and more severe clinical manifestations. Epigenetic events, such as DNA methylation and histone modifications, also contribute to the development and progression of hearing loss in NF2 patients. Furthermore, the accumulation of multiple NF2 and non-NF2 genetic and epigenetic abnormalities at the level of the tumor may contribute to worse hearing outcomes. Understanding genetic and epigenetic signatures in individual NF2 patients and particularly in each VS will allow us to develop novel gene therapies and precision medicine algorithms to preserve hearing in NF2 individuals.
Objective: To systematically appraise the implementation of cochlear implantation (CI) in Usher Syndrome (USH) Types 1, 2, and 3 patients, and analyze who would benefit from CI. Data Sources: A comprehensive search of PubMed, Embase, CINAHL, and Cochrane Library electronic databases from inception through June 2020 was performed. There were no language restrictions. Study Selection: The PRISMA strategy was followed. Included studies discuss USH patients who underwent CI regardless of age, nationality, or clinical subtype. All included studies report post-implantation functional, cognitive, or quality of life outcomes. Only reviews were excluded. Results: Fifteen studies met the inclusion criteria. USH patients experienced improvements in PTA and speech perception and expression outcomes after CI, as well as improvements in phonological memory and quality of life measures. Overall, patients implanted at younger ages outperformed older patients in audiological testing. Similarly, patients with prolonged auditory deprivation had relatively poor performance outcomes in sentence recognition and speech detection following CI. Conclusions: Most USH patients benefit from CI. USH patients who undergo CI at younger ages generally achieve better hearing, speech, and cognitive outcomes. CI at older ages can still prove beneficial if appropriate auditory amplification is started at the right time. Further research is warranted to fill the gap in understanding regarding the gene mutations underlying the pathophysiology of USH that have favorable CI outcomes as well as the optimal time to perform CI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.