52% Yes, a signiicant crisis 3% No, there is no crisis 7% Don't know 38% Yes, a slight crisis 38% Yes, a slight crisis 1,576 RESEARCHERS SURVEYED M ore than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments. Those are some of the telling figures that emerged from Nature's survey of 1,576 researchers who took a brief online questionnaire on reproducibility in research. The data reveal sometimes-contradictory attitudes towards reproduc-ibility. Although 52% of those surveyed agree that there is a significant 'crisis' of reproducibility, less than 31% think that failure to reproduce published results means that the result is probably wrong, and most say that they still trust the published literature. Data on how much of the scientific literature is reproducible are rare and generally bleak. The best-known analyses, from psychology 1 and cancer biology 2 , found rates of around 40% and 10%, respectively. Our survey respondents were more optimistic: 73% said that they think that at least half of the papers in their field can be trusted, with physicists and chemists generally showing the most confidence. The results capture a confusing snapshot of attitudes around these issues, says Arturo Casadevall, a microbiologist at the Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland. "At the current time there is no consensus on what reproducibility is or should be. " But just recognizing that is a step forward, he says. "The next step may be identifying what is the problem and to get a consensus. "
Although replication is a central tenet of science, direct replications are rare in psychology. This research tested variation in the replicability of thirteen classic and contemporary effects across 36 independent samples totaling 6,344 participants. In the aggregate, ten effects replicated consistently.One effect -imagined contact reducing prejudice -showed weak support for replicability. And two effects -flag priming influencing conservatism and currency priming influencing system justification -did not replicate. We compared whether the conditions such as lab versus online or U.S. versus international sample predicted effect magnitudes. By and large they did not. The results of this small sample of effects suggest that replicability is more dependent on the effect itself than on the sample and setting used to investigate the effect. Word Count = 121 words Many Labs 3 Investigating variation in replicability: A "Many Labs" Replication ProjectReplication is a central tenet of science; its purpose is to confirm the accuracy of empirical findings, clarify the conditions under which an effect can be observed, and estimate the true effect size (Brandt et al., 2013; Open Science Collaboration, 2012. Successful replication of an experiment requires the recreation of the essential conditions of the initial experiment. This is often easier said than done. There may be an enormous number of variables influencing experimental results, and yet only a few tested. In the behavioral sciences, many effects have been observed in one cultural context, but not observed in others. Likewise, individuals within the same society, or even the same individual at different times (Bodenhausen, 1990), may differ in ways that moderate any particular result.Direct replication is infrequent, resulting in a published literature that sustains spurious findings (Ioannidis, 2005) and a lack of identification of the eliciting conditions for an effect. While there are good epistemological reasons for assuming that observed phenomena generalize across individuals and contexts in the absence of contrary evidence, the failure to directly replicate findings is problematic for theoretical and practical reasons. Failure to identify moderators and boundary conditions of an effect may result in overly broad generalizations of true effects across situations (Cesario, 2013) or across individuals (Henrich, Heine, & Norenzayan, 2010). Similarly, overgeneralization may lead observations made under laboratory observations to be inappropriately extended to ecological contexts that differ in important ways (Henry, MacLeod, Phillips, & Crawford, 2004). Practically, attempts to closely replicate research findings can reveal important differences in what is considered a direct replication (Schimdt, 2009), thus leading to refinements of the initial theory (e.g., Aronson, 1992, Greenwald et al., 1986. Close replication can also lead to Many Labs 4 the clarification of tacit methodological knowledge that is necessary to elicit the effect of interest (Collins,...
We conducted preregistered replications of 28 classic and contemporary published findings, with protocols that were peer reviewed in advance, to examine variation in effect magnitudes across samples and settings. Each protocol was administered to approximately half of 125 samples that comprised 15,305 participants from 36 countries and territories. Using the conventional criterion of statistical significance ( p < .05), we found that 15 (54%) of the replications provided evidence of a statistically significant effect in the same direction as the original finding. With a strict significance criterion ( p < .0001), 14 (50%) of the replications still provided such evidence, a reflection of the extremely high-powered design. Seven (25%) of the replications yielded effect sizes larger than the original ones, and 21 (75%) yielded effect sizes smaller than the original ones. The median comparable Cohen’s ds were 0.60 for the original findings and 0.15 for the replications. The effect sizes were small (< 0.20) in 16 of the replications (57%), and 9 effects (32%) were in the direction opposite the direction of the original effect. Across settings, the Q statistic indicated significant heterogeneity in 11 (39%) of the replication effects, and most of those were among the findings with the largest overall effect sizes; only 1 effect that was near zero in the aggregate showed significant heterogeneity according to this measure. Only 1 effect had a tau value greater than .20, an indication of moderate heterogeneity. Eight others had tau values near or slightly above .10, an indication of slight heterogeneity. Moderation tests indicated that very little heterogeneity was attributable to the order in which the tasks were performed or whether the tasks were administered in lab versus online. Exploratory comparisons revealed little heterogeneity between Western, educated, industrialized, rich, and democratic (WEIRD) cultures and less WEIRD cultures (i.e., cultures with relatively high and low WEIRDness scores, respectively). Cumulatively, variability in the observed effect sizes was attributable more to the effect being studied than to the sample or setting in which it was studied.
In this paper, we review the empirical literature concerning the important question of whether or not food color influences taste and flavor perception in humans. Although a superficial reading of the literature on this topic would appear to give a somewhat mixed answer, we argue that this is, at least in part, due to the fact that many researchers have failed to distinguish between two qualitatively distinct research questions. The first concerns the role that food coloring plays in the perception of the intensity of a particular flavor (e.g., strawberry, banana, etc.) or taste attribute (e.g., sweetness, saltiness, etc.). The second concerns the role that food coloring plays in the perception of flavor identity. The empirical evidence regarding the first question is currently rather ambiguous. While some researchers have reported a significant crossmodal effect of changing the intensity of a food or drink's coloring on people's judgments of taste or flavor intensity, many others have failed to demonstrate any such effect. By contrast, the research findings concerning the second question clearly support the view that people's judgments of flavor identity are often affected by the changing of a food or drink's color (be it appropriate, inappropriate, or absent). We discuss the possible mechanisms underlying these crossmodal effects and suggest some of the key directions for future research in order to move our understanding in this area forward.
Concerns have been growing about the veracity of psychological research. Many findings in psychological science are based on studies with insufficient statistical power and nonrepresentative samples, or may otherwise be limited to specific, ungeneralizable settings or populations. Crowdsourced research, a type of large-scale collaboration in which one or more research projects are conducted across multiple lab sites, offers a pragmatic solution to these and other current methodological challenges. The Psychological Science Accelerator (PSA) is a distributed network of laboratories designed to enable and support crowdsourced research projects. These projects can focus on novel research questions, or attempt to replicate prior research, in large, diverse samples. The PSA’s mission is to accelerate the accumulation of reliable and generalizable evidence in psychological science. Here, we describe the background, structure, principles, procedures, benefits, and challenges of the PSA. In contrast to other crowdsourced research networks, the PSA is ongoing (as opposed to time-limited), efficient (in terms of re-using structures and principles for different projects), decentralized, diverse (in terms of participants and researchers), and inclusive (of proposals, contributions, and other relevant input from anyone inside or outside of the network). The PSA and other approaches to crowdsourced psychological science will advance our understanding of mental processes and behaviors by enabling rigorous research and systematically examining its generalizability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.