The endoplasmic reticulum (ER) is a site of protein biogenesis in eukaryotic cells. Perturbing ER homeostasis activates stress programs collectively called the unfolded protein response (UPR). The UPR enhances production of ER-resident chaperones and enzymes to reduce the burden of misfolded proteins. On resolution of ER stress, ill-defined, selective autophagic programs remove excess ER components. Here we identify Sec62, a constituent of the translocon complex regulating protein import in the mammalian ER, as an ER-resident autophagy receptor. Sec62 intervenes during recovery from ER stress to selectively deliver ER components to the autolysosomal system for clearance in a series of events that we name recovER-phagy. Sec62 contains a conserved LC3-interacting region in the C-terminal cytosolic domain that is required for its function in recovER-phagy, but is dispensable for its function in the protein translocation machinery. Our results identify Sec62 as a critical molecular component in maintenance and recovery of ER homeostasis. DOI: https://doi.org/10.1038/ncb3423Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-127515 Accepted Version Originally published at: Fumagalli, Fiorenza; Noak, Julia; Bergmann, Timothy J; Presmanes, Eduardo Cebollero; Pisoni, Giorgia Brambilla; Fasana, Elisa; Fregno, Ilaria; Galli, Carmela; Loi, Marisa; Solda, Tatiana; D'Antuono, Rocco; Raimondi, Andrea; Jung, Martin; Melnyk, Armin; Schorr, Stefan; Schreiber, Anne; Simonelli, Luca; Varani, Luca; Wilson-Zbinden, Caroline; Zerbe, Oliver; Hofmann, Kay; Peter, Matthias; Quadroni, Manfredo; Zimmermann, Richard; Molinari, Maurizio (2016 To define mechanisms that regulate the return of ER-resident chaperones and folding factors to their physiologic intracellular level after resolution of an ER stress, we established a protocol for reversible induction of UPR in cultured mammalian cells (Fig. 1a). Briefly, human embryonic kidney cells (HEK293) or mouse embryonic fibroblasts (MEF) were exposed for 12 h to non-toxic doses of cyclopiazonic acid (CPA), a reversible inhibitor of the sarco/endoplasmic reticulum calcium pump 6 . The return of ER-resident gene products at their pre-stress level was monitored during resolution of the UPR obtained upon CPA wash out ( CPA wash out initiated a recovery phase characterized by the rapid return of ER stress-induced transcripts at, or below, their pre-stress levels (Fig. 1b, recovery, T 1/2 average ≈ 1 h, blue line). The corresponding ER stress-induced proteins returned to their physiologic levels with much slower kinetics (Fig. 1c, d, T 1/2 average ≈ 10 h, blue). 3With the exception of Herp, which is rapidly turned over with intervention of proteasomes (Fig. 1c, d (Fig. 1g, 2a) and other membrane and luminal ER marker proteins such as Sec62 and Crt ( Fig. 2b and Extended data Fig. 3) in 0.5-1.5 µm diameter cytoplasmic puncta that rapidly disappeared upon BafA1 wash out (Extended data Fig. 4). Cytosolic puncta containing ER marker prot...
The mechanisms that determine how folding attempts are interrupted to target folding-incompetent proteins for endoplasmic reticulum-associated degradation (ERAD) are poorly defined. Here the alpha-mannosidase I-like protein EDEM was shown to extract misfolded glycoproteins, but not glycoproteins undergoing productive folding, from the calnexin cycle. EDEM overexpression resulted in faster release of folding-incompetent proteins from the calnexin cycle and earlier onset of degradation, whereas EDEM down-regulation prolonged folding attempts and delayed ERAD. Up-regulation of EDEM during ER stress may promote cell recovery by clearing the calnexin cycle and by accelerating ERAD of terminally misfolded polypeptides.
Maintenance of cellular proteostasis relies on efficient clearance of defective gene products. For misfolded secretory proteins, this involves dislocation from the endoplasmic reticulum (ER) into the cytosol followed by proteasomal degradation. However, polypeptide aggregation prevents cytosolic dislocation and instead activates ill-defined lysosomal catabolic pathways. Here, we describe an ER-to-lysosome-associated degradation pathway (ERLAD) for proteasome-resistant polymers of alpha1-antitrypsin Z (ATZ). ERLAD involves the ER-chaperone calnexin (CNX) and the engagement of the LC3 lipidation machinery by the ER-resident ER-phagy receptor FAM134B, echoing the initiation of starvation-induced, receptor-mediated ER-phagy. However, in striking contrast to ER-phagy, ATZ polymer delivery from the ER lumen to LAMP1/RAB7-positive endolysosomes for clearance does not require ER capture within autophagosomes. Rather, it relies on vesicular transport where single-membrane, ER-derived, ATZ-containing vesicles release their luminal content within endolysosomes upon membrane:membrane fusion events mediated by the ER-resident SNARE STX17 and the endolysosomal SNARE VAMP8. These results may help explain the lack of benefits of pharmacologic macroautophagy enhancement that has been reported for some luminal aggregopathies.
A major virulence factor in the stomach chronic infection by Helicobacter pylori is a protein toxin (VacA), which alters cell membrane trafficking of late endosomal/prelysosomal compartments. Its role in the chronic infection established by H. pylori is unknown. To test the possibility that VacA alters antigen processing taking place in prelysosomal compartments, we have used the well-established model of antigen processing and presentation consisting of tetanus toxoid–specific human (CD4+) T cells stimulated by autologous antigen-pulsed Epstein-Barr virus-transformed B cells. We found that VacA interferes with proteolytic processing of tetanus toxin and toxoid and specifically inhibits the Ii-dependent pathway of antigen presentation mediated by newly synthesized major histocompatibility complex (MHC) class II, while leaving unaffected the presentation pathway dependent on recycling MHC class II. The results presented here suggest that VacA may contribute to the persistence of H. pylori by interfering with protective immunity and that this toxin is a new useful tool in the study of the different pathways of antigen presentation.
BACE457 is a recently identified pancreatic isoform of human β-secretase. We report that this membrane glycoprotein and its soluble variant are characterized by inefficient folding in the ER, leading to proteasome-mediated ER-associated degradation (ERAD). Dissection of the degradation process revealed that upon release from calnexin, extensively oxidized BACE457 transiently entered in disulfide-bonded complexes associated with the lumenal chaperones BiP and protein disulfide isomerase (PDI) before unfolding and dislocation into the cytosol for degradation. BACE457 and its lumenal variant accumulated in disulfide-bonded complexes, in the ER lumen, also when protein degradation was inhibited. The complexes were disassembled and the misfolded polypeptides were cleared from the ER upon reactivation of the degradation machinery. Our data offer new insights into the mechanism of ERAD by showing a sequential involvement of the calnexin and BiP/PDI chaperone systems. We report the unexpected transient formation of covalent complexes in the ER lumen during the ERAD process, and we show that PDI participates as an oxidoreductase and a redox-driven chaperone in the preparation of proteins for degradation from the mammalian ER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.