In this paper attention is first focused on a comparative analysis of three hydraulic models for overland flow simulations. In particular, the overland flow was considered as a 2D unsteady flow and was mathematically described using three approaches (fully dynamic, diffusive and kinematic waves). Numerical results highlighted that the differences among the simulations were not very important when the simulations referred to commonly used ideal tests found in the literature in which the topography is reduced to plane surface. Significant differences were observed in more complicated tests for which only the fully dynamic model was able to provide a good prediction of the observed discharges and water depths. Then, attention is focused on the fully dynamic model and in particular on the analysis of two numerical schemes (TVD-MacCormack and HLL) and the influence of the grid size. Numerical tests carried out on irregular topography show that, as the grid size decreases, the performance of the HLL scheme becomes closer to that of the TVD-MacCormack scheme in shorter computational times at least for high rainfall intensity.
P. Costabile
The Hydrologic Engineering Centre-River Analysis System (HEC-RAS), developed by the US Army Corps of Engineers, is one of the most known, analyzed and used model for flood mapping both in the scientific literature and in practice. In the recently released version (release 5.0.7), the HEC-RAS model has been enriched with novel modules, performing fully 2-D computations based on the 2-D fully dynamic equations as well as the 2-D diffusion wave equations; moreover the application of rainfall to each cell of the two-dimensional domain is now possible. Contrarily to the common applications for flood propagation in river reach, this specific module has never been analyzed in the literature. Therefore, the main purpose of this work is to assess the potential and the capabilities of the 2-D HEC-RAS model in rainfall-runoff simulations at the basin scale, comparing the results obtained using both the options (fully dynamic equations and diffusion wave equations) to the simulations obtained by using a 2-D fully dynamic model developed by the authors for research purposes. Both models have been tested in a small basin in Northern Italy to analyze the differences in terms of discharge hydrographs and flooded areas. The application of a criterion for hazard class mapping has shown significant variations between the two models. These results provide practical indications for the water engineering community in the innovative research field related to the use of 2-D SWEs at the basin scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.