Catalytic interfaces involving surface-bound molecular catalysts often exhibit a large structural heterogeneity from uncontrolled variation in surface morphology. Conventional spectroscopic techniques typically average over these different structural motifs within the sample, making it difficult to link the underlying surface morphology to the properties of the immobilized catalyst. Here we present the first direct comparison of the vibrational dynamics of a CO2 reduction catalyst bound to two different single-crystalline TiO2 surfaces, rutile (001) and (110), probed with transient surface-specific sum-frequency generation spectroscopy. We find that the change in surface structure between crystallographic faces alters both the vibrational frequency and relaxation time of the symmetric carbonyl stretching mode of the catalyst, with (001) displaying a lower frequency and longer relaxation time. This results from a change in the catalyst electronic structure and indicates that the molecular properties of the catalyst, likely including the catalytic properties, depend on the specific TiO2 surface to which it is bound. The comparison of the molecular properties on these two single crystal surfaces is an essential step toward understanding how semiconductor surface structure influences catalyst behavior and identifying optimal surface structures for improved catalytic performance.
Until now, ultrafast IR spectroscopy has been limited by the bandwidth of optical parametric amplifiers, typically 100-400 cm(-1). Here we present the first example of transient IR spectroscopy using a continuum laser source to probe the entire mid-IR region with ultrafast time resolution. The continuum source is based on focusing the fundamental, second harmonic, and third harmonic of 1 mJ, 25 fs, 800 nm pulses in air, generating ∼150 fs continuum mid-IR pulses that span the frequency range of <400 to >5000 cm(-1) or, conversely, <2 to >25 μm. We characterize the spectral and temporal properties of dicarbonylacetonato rhodium(I) in hexane. We further demonstrate the versatility of the method by measuring the very fast and broad (>1500 cm(-1)) spectral changes following IR excitation associated with the 7-azaindole-acetic acid heterodimer in carbon tetrachloride.
Cyclic hydrogen-bonded structures are common motifs in biological systems, providing structural stability and mediating proton transfer for redox reactions. The mechanism of proton transfer across hydrogen-bonded interfaces depends on the strength of the intermolecular coupling between bridging OH/NH vibrational modes. Here we present a novel ultrafast continuum mid-IR spectroscopy experiment to study the vibrational dynamics of the 7-azaindole-acetic acid (7AI-Ac) heterodimer as a model system for asymmetric cyclic hydrogen-bonded structures. In addition to spreading of the excitation across the whole OH band within the time resolution of the experiment, excitation of a 300 cm(-1) region of the ∼1000 cm(-1) broad OH stretching mode of the acetic acid monomer leads to a frequency shift in the NH stretching mode of the 7AI monomer. This indicates that the NH and OH stretching modes located on the two monomers are strongly coupled despite being separated by 750 cm(-1). The strong coupling further causes the OH and NH bands to decay with a common decay time of ∼2.5 ps. This intermolecular coupling is mediated through the hydrogen-bonded structure of the 7AI-Ac heterodimer and is likely a general property of cyclic hydrogen-bonded structures. Characterizing the vibrational dynamics of and the coupling between the high-frequency OH/NH modes will be important for understanding proton transfer across such molecular interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.