The present study aims to extend insights of surf zone turbulence dynamics to wave groups. In a large-scale wave flume, bichromatic wave groups were produced with 31.5 s group period, 4.2 s mean wave period, and a 0.58 m maximum wave height near the paddle. This condition resulted in plunging-type wave breaking over a fixed, gravel-bed, barred profile. Optic, acoustic and electromagnetic instruments were used to measure the flow and the spatial and temporal distributions of turbulent kinetic energy (TKE). The measurements showed that turbulence in the shoaling region is primarily bed-generated and decays almost fully within one wave cycle, leading to TKE variations at the short wave frequency. The wave breaking-generated turbulence, in contrast, decays over multiple wave cycles, leading to a gradual increase and decay of TKE during a wave group cycle. In the wave breaking region, TKE dynamics are driven by the production and subsequent downward transport of turbulence under the successive breaking waves in the group. Consequently, the maximum near-bed TKE in the breaking region can lag the highest breaking wave by up to 2.5 wave cycles. The net cross-shore transport of TKE is in the shoaling region primarily driven by shortwave velocities and is shoreward-directed; in the wave breaking region, the TKE transport is seaward-directed by the undertow and the longwave velocities. Downward transport of TKE is driven by the vertical component of the timeaveraged flow. The cross-shore and vertical diffusive transport rates are small relative to the advective transport rates.
In this paper, the findings of an experimental analysis aimed at investigating the flow generated by waves propagating over a fixed rippled bed within a wave flume are reported. The bottom of the wave flume was constituted by horizontal part followed by a 1:10 sloping beach. Bedforms were generated in a previous campaign performed with loose sand, and then hardened by means of thin layers of concrete. The flow was acquired through a Vectrino Profiler along two different ripples, one located in the horizontal part of the bed and the second over the sloping beach. It was observed that, on the horizontal bed, near the bottom, ripple lee side triggered the appearance of an onshore directed steady streaming, whereas ripple stoss side gave rise to an offshore directed steady streaming. On the sloping bed, a strong return current appears at all positions, interacting with the rippled bottom. The turbulence is non-negligible within the investigated water depth, particularly when velocities were onshore directed, due to flow asymmetry. Turbulence caused a considerable flow stirring which, above a non-cohesive bed, could lift the sediment up in the water column and give rise to a strong sediment transport.
This paper reports on an experimental campaign focused on the generation and evolution of small scale bedforms over a sloping sandy beach. The wave propagation over a sloping bed triggers a flow asymmetry that reflects on the bedform characteristics. Morphodynamic analyses on ripple evolution and migration led to observe that at the equilibrium the ripples have larger offshore flanks and are leant toward the beach. However migration velocity may be onshore or offshore directed. The equilibrium ripple characteristics seem to be well described by Nielsen (1981) ripple predictor.
Multiphase CFD models recently have proved promising in modelling crossâ€shore sediment transport and morphodynamics (Jacobsen et al 2014). However, modelling breaking wave turbulence remains a major challenge for these models, because it occurs at very different spatial and temporal length scales and involves the interaction between surface generated turbulence and turbulence generated in the bottom boundary layer. To an extent these challenges arise from a lack of appropriate experimental data, since most previous experimental studies involved breaking waves at small-scale, and have not permitted investigation of the turbulent boundary layer processes. Moreover, most existing studies have concentrated on regular waves, thereby excluding the flow and turbulence dynamics occurring at wave group time-scales under irregular waves within the surf zone. These limitations motivated a new experiment in the large-scale CIEM wave flume in Barcelona involving regular and irregular waves. The experiment was conducted in May-July 2017 within the HYDRALAB+ Transnational Access project HYBRID.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.