An elastase-2 has been recently described as the major angiotensin (Ang) II-forming enzyme of the rat mesenteric arterial bed (MAB) perfusate. Here, we have investigated the interaction of affinity-purified rat MAB elastase-2 with some substrates and inhibitors of both pancreatic elastases-2 and Ang II-forming chymases. The Ang II precursor [Pro 11 -D-Ala 12]-Ang I was converted into Ang II by the rat MAB elastase-2 with catalytic efficiency of 8.6 min-1 microM-1, and the chromogenic substrates N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide and N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide were hydrolyzed by the enzyme with catalytic efficiencies of 10.6 min-1 microM-1 and 7.6 min-1 microM-1, respectively. The non-cleavable peptide inhibitor CH-5450 inhibited the rat MAB elastase-2 activities toward the substrates Ang I (IC50 = 49 microM) and N-succinly-Ala-Ala-Pro-Phe-p-nitroanilide (IC 50 = 4.8 microM), whereas N-acetyl-Ala-Ala-Pro-Leu-chloromethylketone, an effective active site-directed inhibitor of pancreatic elastase-2, efficiently blocked the Ang II-generating activity of the rat MAB enzyme (IC 50 = 4.5 microM). Altogether, the data presented here confirm and extend the enzymological similarities between pancreatic elastase-2 and its rat MAB counterpart. Moreover, the thus far unrealized interaction of elastase-2 with [Pro 11-D-Ala 12]-Ang I and CH-5450, both regarded as selective for chymases, suggests that evidence for the in vivo formation of Ang II by chymases may have been overestimated in previous investigations of Ang II-forming pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.