Beijing family strains of Mycobacterium tuberculosis have attracted worldwide attention because of their wide geographical distribution and global emergence. Peru, which has a historical relationship with East Asia, is considered to be a hotspot for Beijing family strains in South America. We aimed to unveil the genetic diversity and transmission characteristics of the Beijing strains in Peru. A total of 200 Beijing family strains were identified from 2140 M. tuberculosis isolates obtained in Lima, Peru, between December 2008 and January 2010. Of them, 198 strains were classified into sublineages, on the basis of 10 sets of single nucleotide polymorphisms (SNPs). They were also subjected to variable number tandem-repeat (VNTR) typing using an international standard set of 15 loci (15-MIRU-VNTR) plus 9 additional loci optimized for Beijing strains. An additional 70 Beijing family strains, isolated between 1999 and 2006 in Lima, were also analyzed in order to make a longitudinal comparison. The Beijing family was the third largest spoligotyping clade in Peru. Its population structure, by SNP typing, was characterized by a high frequency of Sequence Type 10 (ST10), which belongs to a modern subfamily of Beijing strains (178/198, 89.9%). Twelve strains belonged to the ancient subfamily (ST3 [n = 3], ST25 [n = 1], ST19 [n = 8]). Overall, the polymorphic information content for each of the 24 loci values was low. The 24 loci VNTR showed a high clustering rate (80.3%) and a high recent transmission index (RTIn−1 = 0.707). These strongly suggest the active and on-going transmission of Beijing family strains in the survey area. Notably, 1 VNTR genotype was found to account for 43.9% of the strains. Comparisons with data from East Asia suggested the genotype emerged as a uniquely endemic clone in Peru. A longitudinal comparison revealed the genotype was present in Lima by 1999.
Thy-1-negative lung fibroblasts are resistant to apoptosis. The mechanisms governing this process and its relevance to fibrotic remodeling remain poorly understood. By using either sorted or transfected lung fibroblasts, we found that Thy-1 expression is associated with downregulation of anti-apoptotic molecules Bcl-2 and Bcl-xL, as well as increased levels of cleaved-caspase 9. Addition of rhFasL and staurosporine, well-known apoptosis inducers, caused significantly increased cleaved caspase 3, 8, and PARP in Thy-1-transfected cells. Furthermore, rhFasL induced Fas translocation into lipid rafts and its colocalization with Thy-1. These in vitro results indicate that Thy-1, in a manner dependent upon its GPI anchor and lipid raft localization, regulates apoptosis in lung fibroblasts via Fas-, Bcl-, and caspase-dependent pathways. In vivo, Thy-1 deficient (Thy1−/−) mice displayed persistence of myofibroblasts in the resolution phase of bleomycin-induced fibrosis, associated with accumulation of collagen and failure of lung fibrosis resolution. Apoptosis of myofibroblasts is decreased in Thy1−/− mice in the resolution phase. Collectively, these findings provide new evidence regarding the role and mechanisms of Thy-1 in initiating myofibroblast apoptosis that heralds the termination of the reparative response to bleomycin-induced lung injury. Understanding the mechanisms regulating fibroblast survival/apoptosis should lead to novel therapeutic interventions for lung fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.