Damage to the endothelial glycocalyx, which helps maintain vascular homeostasis, heightens the sensitivity of the vasculature to atherogenic stimuli. Patients with renal failure have endothelial dysfunction and increased risk for cardiovascular morbidity and mortality, but the state of the endothelial glycocalyx in these patients is unknown. Here, we used Sidestream Darkfield imaging to detect changes in glycocalyx dimension in dialysis patients and healthy controls from in vivo recordings of the sublingual microcirculation. Dialysis patients had increased perfused boundary region and perfused diameters, consistent with deeper penetration of erythrocytes into glycocalyx, indicating a loss of glycocalyx barrier properties. These patients also had higher serum levels of the glycocalyx constituents hyaluronan and syndecan-1 and increased hyaluronidase activity, suggesting the shedding of these components. Loss of residual renal function had no influence on the imaging parameters but did associate with greater shedding of hyaluronan in blood. Furthermore, patients with higher levels of inflammation had more significant damage to the glycocalyx barrier. In conclusion, these data suggest that dialysis patients have an impaired glycocalyx barrier and shed its constituents into blood, likely contributing to the sustained endothelial cell activation observed in ESRD.
Background/Aims: The capillary wall coated by the endothelial glycocalyx is the main transport barrier during peritoneal dialysis (PD). Here, we investigated the relationships between measurements of the systemic endothelial glycocalyx and peritoneal transport in PD patients. Methods: We performed sidestream darkfield (SDF) imaging of the sublingual microvasculature in 15 patients, measured the perfused boundary region (PBR), which includes the permeable part of the glycocalyx, and calculated the estimated blood vessel density (EBVD). All patients underwent a peritoneal permeability analysis. Results: No relationships were present between the imaging and peritoneal transport parameters, neither in the group as a whole nor in fast transporters. In patients with nonfast peritoneal transport status, PBR had a negative relationship with EBVD and small solute transport, and a positive one with net ultrafiltration (NUF). The EBVD showed a positive correlation with glucose absorption and a negative one with NUF. We found no relationships with the peritoneal transport of albumin. Conclusions: No relationships are present between the systemic endothelial glycocalyx, which was assessed by SDF, and peritoneal transport. In nonfast transporters, a reduction in blood vessel density caused by endothelial glycocalyx alterations or a thicker permeable phase of the glycocalyx delaying the access of small solutes to the small pores may be important.
♦ INTRODUCTION: Chronic uremia and the exposure to dialysis solutions during peritoneal dialysis (PD) induce peritoneal alterations. Using a long-term peritoneal exposure model, we compared the effects of chronic kidney failure (CKD) itself and exposure to either a 'conventional' or a 'biocompatible' dialysis solution on peritoneal morphology and function. ♦ METHODS: Wistar rats (Harlan, Zeist, the Netherlands) were grouped into: normal kidney function (NKF), CKD induced by 70% nephrectomy, CKD receiving daily peritoneal infusions with 3.86% glucose Dianeal (CKDD), or Physioneal (both solutions from Baxter Healthcare, Castlebar, Ireland) (CKDP). At 16 weeks, a peritoneal function test was performed, and histology, ultrastructure, and hydroxyproline content of peritoneal tissue were assessed. ♦ RESULTS: Comparing CKD with NKF, peritoneal transport rates were higher, mesothelial cells (MC) displayed increased number of microvilli, blood and lymph vasculature expanded, vascular basal lamina appeared thicker, with limited areas of duplication, and fibrosis had developed. All alterations, except lymphangiogenesis, were enhanced by exposure to both dialysis fluids. Distinct MC alterations were observed in CKDD and CKDP, the latter displaying prominent basolateral protrusions. In addition, CKDP was associated with a trend towards less fibrosis compared to CKDD. ♦ CONCLUSIONS: Chronic kidney failure itself induced peritoneal alterations, which were in part augmented by exposure to glucose-based dialysis solutions. Overall, the conventional and biocompatible solutions had similar long-term effects on the peritoneum. Importantly, the latter may attenuate the development of fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.