We present a mechanochemical procedure, with solvent-free, greenchemistry credentials, to grow all-inorganic CsPbBr 3 perovskite. The crystal structure of this perovskite and its correlations with the physicochemical properties have been studied. Synchrotron X-ray diffraction (SXRD) and neutron powder diffraction (NPD) allowed us to follow the crystallographic behavior from 4 to 773 K. Unreported features like the observed negative thermal expansion of the b unit-cell parameter stem from octahedral distortions in the 4−100 K temperature range. The mechanochemical synthesis was designed to reduce the impact energy during the milling process, leading to a defect-free, well-crystallized sample characterized by a minimum unit-cell volume and octahedral tilting angles in the low-temperature orthorhombic perovskite framework, defined in the Pbnm space group. The UV−vis diffuse reflectance spectrum shows a reduced band gap of 2.22(3) eV, and the photocurrent characterization in a photodetector reveals excellent properties with potential applications of this material in optoelectronic devices.
Direct bandgap semiconductors of the hybrid-perovskite family CH3NH3PbX3 (X= I, Br, Cl) exhibit outstanding light absorption properties and are the materials of choice for solar energy applications. As an alternative...
Methylammonium (MA) lead trihalide perovskites, CH3NH3PbX3 (X = I, Br, Cl), have emerged as a new class of light-absorbing materials for photovoltaic applications, reaching efficiencies of 23% when implemented in solar cell heterojunctions. In particular, MAPbBr3 is a promising member with a large bandgap that gives rise to a high open circuit voltage. Here we present a structural study from neutron diffraction (ND) data of an undeuterated MAPbBr3 specimen, carried out to follow its crystallographic behaviour in the 2–298 K temperature range. Besides the known crystallographic phases, i.e. the high-temperature Pm$$\overline{3}$$
3
¯
m cubic structure, the intermediate I4/mcm tetragonal symmetry and the low-temperature Pnma orthorhombic phase, we additionally identified, from a detailed sequential ND analysis, a novel intermediate phase within the 148.5–154.0 K temperature range as an orthorhombic Imma structure, early associated with a coexistence of phases. Moreover, our ND data allowed us to unveil the configuration of the organic MA units and their complete localization within the mentioned temperature range, thus improving the crystallographic description of this compound. The evolution with temperature of the H-bonds between the organic molecule and the inorganic cage is also followed. A deep knowledge of the crystal structure and, in particular, the MA conformation inside the perovskite cage seems essential to establish structure–property correlations that may drive further improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.